首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Monodisperse hollow carbon nanocapsules (<200 nm) with mesoporous shells were synthesized by coating their outer shells with silica to prevent aggregation during their high‐temperature annealing. Monodispersed silica nanoparticles were used as starting materials and octadecyltrimethoxysilane (C18TMS) was used as a carbon source to create core–shell nanostructures. These core–shell nanoparticles were coated with silica on their outer shell to form a second shell layer. This outer silica shell prevented aggregation during calcination. The samples were characterized by TEM, SEM, dynamic light scattering (DLS), UV/Vis spectroscopy, and by using the Brunauer–Emmett–Teller (BET) method. The as‐synthesized hollow carbon nanoparticles exhibited a high surface area (1123 m2 g?1) and formed stable dispersions in water after the pegylation process. The drug‐loading and drug‐release properties of these hollow carbon nanocapsules were also investigated.  相似文献   

2.
Carbonyl iron powders were coated with iron phosphate using phosphating method and boehmite (γ‐AlOOH) or silicon hydroxide (Si(OH)4) nanoparticles derived from the hydrolysis of tri‐sec‐butoxide (Al(OC4H9)3) or tetramethylsilane (Si(OCH3)4) using sol–gel method. The coated powders were dried and calcined at 400 °C for 3 h in air. Cross‐section morphology of coated carbonyl iron powders were investigated by scanning electron microscopy energy dispersive X‐ray analysis. Coated Fe micro‐particles were spherical in shape with ‘shell/core’ structures. The shells consisted of an amorphous layer with varying thickness (100–800 nm) and the core represented a carbonyl iron. Gelatinous morphology of dried FePO4 coating composed from nanoparticles of iron oxyhydroxides and hydrated iron phosphate with a shell thickness of ~100 nm around iron particles was observed. In coatings based on alumina or silica xerogels with a thickness of ~100–150 nm or ~200–500 nm, the coatings were composed of iron oxyhydroxides and γ‐AlOOH or Si(OH)4. The resulting XRD diffractograms revealed the hematite (α‐Fe2O3) and magnetite (Fe3O4) that were formed in phosphated and sol–gel coated iron powders. The X‐ray diffraction patterns did not verify the presence of phosphates, alumina or silica and indicate the amorphous or nanocrystalline structure of FePO4, γ‐Al2O3 and SiO2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
An efficient strategy (enhanced metal oxide interaction and core–shell confinement to inhibit the sintering of noble metal) is presented confined ultrathin Pd‐CeOx nanowire (2.4 nm) catalysts for methane combustion, which enable CH4 total oxidation at a low temperature of 350 °C, much lower than that of a commercial Pd/Al2O3 catalyst (425 °C). Importantly, unexpected stability was observed even under harsh conditions (800 °C, water vapor, and SO2), owing to the confinement and shielding effect of the porous silica shell together with the promotion of CeO2. Pd‐CeOx solid solution nanowires (Pd‐Ce NW) as cores and porous silica as shells (Pd‐CeNW@SiO2) were rationally prepared by a facile and direct self‐assembly strategy for the first time. This strategy is expected to inspire more active and stable catalysts for use under severe conditions (vehicle emissions control, reforming, and water–gas shift reaction).  相似文献   

4.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

5.
A series of core–shell‐structured composite molecular sieves comprising zeolite single crystals (i.e., ZSM‐5) as a core and ordered mesoporous silica as a shell were synthesized by means of a surfactant‐directed sol–gel process in basic medium by using cetyltrimethylammonium bromide (CTAB) as a template and tetraethylorthosilicate (TEOS) as silica precursor. Through this coating method, uniform mesoporous silica shells closely grow around the anisotropic zeolite single crystals, the shell thickness of which can easily be tuned in the range of 15–100 nm by changing the ratio of TEOS/zeolite. The obtained composite molecular sieves have compact meso‐/micropore junctions that form a hierarchical pore structure from ordered mesopore channels (2.4–3.0 nm in diameter) to zeolite micropores (≈0.51 nm). The short‐time kinetic diffusion efficiency of benzene molecules within pristine ZSM‐5 (≈7.88×10?19 m2 s?1) is almost retainable after covering with 75 nm‐thick mesoporous silica shells (≈7.25×10?19 m2 s?1), which reflects the greatly opened junctions between closely connected mesopores (shell) and micropores (core). The core–shell composite shows greatly enhanced adsorption capacity (≈1.35 mmol g?1) for large molecules such as 1,3,5‐triisopropylbenzene relative to that of pristine ZSM‐5 (≈0.4 mmol g?1) owing to the mesoporous silica shells. When Al species are introduced during the coating process, the core–shell composite molecular sieves demonstrate a graded acidity distribution from weak acidity of mesopores (predominant Lewis acid sites) to accessible strong acidity of zeolite cores (Lewis and Brønsted acid sites). The probe catalytic cracking reaction of n‐dodecane shows the superiority of the unique core–shell structure over pristine ZSM‐5. Insight into the core–shell composite structure with hierarchical pore and graded acidity distribution show great potential for petroleum catalytic processes.  相似文献   

6.
Mesoporous nanoparticles composed of γ‐Al2O3 cores and α‐Fe2O3 shells were synthesized in aqueous medium. The surface charge of γ‐Al2O3 helps to form the core–shell nanocrystals. The core–shell structure and formation mechanism have been investigated by wide‐angle XRD, energy‐dispersive X‐ray spectroscopy, and elemental mapping by ultrahigh‐resolution (UHR) TEM and X‐ray photoelectron spectroscopy. The N2 adsorption–desorption isotherm of this core–shell materials, which is of type IV, is characteristic of a mesoporous material having a BET surface area of 385 m2 g?1 and an average pore size of about 3.2 nm. The SEM images revealed that the mesoporosity in this core–shell material is due to self‐aggregation of tiny spherical nanocrystals with sizes of about 15–20 nm. Diffuse‐reflectance UV/Vis spectra, elemental mapping by UHRTEM, and wide‐angle XRD patterns indicate that the materials are composed of aluminum oxide cores and iron oxide shells. These Al2O3@Fe2O3 core–shell nanoparticles act as a heterogeneous Fenton nanocatalyst in the presence of hydrogen peroxide, and show high catalytic efficiency for the one‐pot conversion of cyclohexanone to adipic acid in water. The heterogeneous nature of the catalyst was confirmed by a hot filtration test and analysis of the reaction mixture by atomic absorption spectroscopy. The kinetics of the reaction was monitored by gas chromatography and 1H NMR spectroscopy. The new core–shell catalyst remained in a separate solid phase, which could easily be removed from the reaction mixture by simple filtration and the catalyst reused efficiently.  相似文献   

7.
Recyclable phase transfer catalysts containing magnetic nanoparticles (MNPs) have been known as a major trend towards sustainable catalysts. In this study, a novel class of magnetic porous polymer on the basis of calix[4]resorcinarene was synthesized starting from silica‐coated Fe3O4 core‐shell nanoparticles. This compound was found as an efficient phase transfer catalyst to the conversion of benzyl halides into benzyl azides and cyanides in good yields. The catalyst could be used at least for five consecutive cycles without appreciable loss in the catalytic activity.  相似文献   

8.
A systematic study on the preparation of SnO2 nanoparticles using a simple sol‐gel technique has been conducted by varying reaction parameters such as concentration of ammonia, ammonia feed rate and reaction temperature. The tin oxide obtained was characterized by using FTIR, BET, XRD and TEM. Particles size was obtained in the range of 4 to 5.6 nm and the surface area was found to be between 76 to 114 m2 g?1 depending on the reaction parameters. Meanwhile, the catalytic activity of SnO2 was first time investigated for the hydrogenation reaction of styrene using ethanol as the solvent at 70 °C and 1 atmospheric pressure. It is found that SnO2 acts as a good catalyst in this hydrogenation process. The product conversions in the presence of catalysts prepared at different conditions were between 37 to 72%.  相似文献   

9.
Hierarchical and hollow nanostructures have recently attracted considerable attention because of their fantastic architectures and tunable property for facile lithium ion insertion and good cycling stability. In this study, a one‐pot and unusual carving protocol is demonstrated for engineering hollow structures with a porous shell. Hierarchical TiO2 hollow spheres with nanosheet‐assembled shells (TiO2 NHS) were synthesized by the sequestration between the titanium source and 2,2′‐bipyridine‐5,5′‐dicarboxylic acid, and kinetically controlled etching in trifluoroacetic acid medium. In addition, annealing such porous nanostructures presents the advantage of imparting carbon‐doped functional performance to its counterpart under different atmospheres. Such highly porous structures endow very large specifics surface area of 404 m2 g?1 and 336 m2 g?1 for the as‐prepared and calcination under nitrogen gas. C/TiO2 NHS has high capacity of 204 mA h g?1 at 1 C and a reversible capacity of 105 mA h g?1 at a high rate of 20 C, and exhibits good cycling stability and superior rate capability as an anode material for lithium‐ion batteries.  相似文献   

10.
Magnetic silica‐coated magnetite (Fe3O4) sub‐microspheres with immobilized metal‐affinity ligands are prepared for protein adsorption. First, magnetite sub‐microspheres were synthesized by a hydrothermal method. Then silica was coated on the surface of Fe3O4 particles using a sol–gel method to obtain magnetic silica sub‐microspheres with core‐shell morphology. Next, the trichloro(4‐chloromethylphenyl) silane was immobilized on them, reacted with iminodiacetic acid (IDA), and charged with Cu2+. The obtained magnetic silica sub‐microspheres with immobilized Cu2+ were applied for the absorption of bovine hemoglobin (BHb) and the removal of BHb from bovine blood. The size, morphology, and magnetic properties of the resulting magnetic micro(nano) spheres were investigated by using scanning microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), and a vibrating sample magnetometer (VSM). The measurements showed that the magnetic sub‐microspheres are spherical in shape, very uniform in size with a core‐shell, and are almost superparamagnetic. The saturation magnetization of silica‐coated magnetite (Fe3O4) sub‐microspheres reached about 33 emu g?1. Protein adsorption results showed that the sub‐microspheres had a high adsorption capacity for BHb (418.6 mg g?1), low nonspecific adsorption, and good removal of BHb from bovine blood. This opens a novel route for future applications in removing abundant proteins in proteomic analysis.  相似文献   

11.
The effect of secondary (diethanolamine) and tertiary (triethanolamine) alkanolamines as catalysts on the formation of mesoporous Stöber silica nanoparticles by sol–gel method was studied. The particles were characterized by thermogravimetry and differential thermal analysis, Fourier transform infrared spectroscopy, N2 physisorption measurements, and field emission scanning electron microscopy. By using ammonia and different alkanolamines as catalysts, the Brunauer–Emmet–Teller (BET) surface area and pore volume increased in the order of ammonia < diethanolamine < triethanolamine. A maximum BET surface area of 140.1 m2 g?1 and pore volume of 0.66 cm3 g?1 were obtained from triethanolamine catalyzed silica particles. The average particle size of silica prepared by ammonia and different alkanolamines as catalysts decreased in the order of ammonia > diethanolamine > triethanolamine. The role of different alkanolamines on the textural properties and particle size of silica is explained in terms of their relative steric hindrance and basicity.  相似文献   

12.
Heteroatom doping is an effective method to adjust the electrochemical behavior of carbonaceous materials. In this work, boron‐doped, carbon‐coated SnO2/graphene hybrids (BCTGs) were fabricated by hydrothermal carbonization of sucrose in the presence of SnO2/graphene nanosheets and phenylboronic acid or boric acid as dopant source and subsequent thermal treatment. Owing to their unique 2D core–shell architecture and B‐doped carbon shells, BCTGs have enhanced conductivity and extra active sites for lithium storage. With phenylboronic acid as B source, the resulting hybrid shows outstanding electrochemical performance as the anode in lithium‐ion batteries with a highly stable capacity of 1165 mA h g?1 at 0.1 A g?1 after 360 cycles and an excellent rate capability of 600 mA h g?1 at 3.2 A g?1, and thus outperforms most of the previously reported SnO2‐based anode materials.  相似文献   

13.
Bimetallic core‐shell nanostructures are emerging as more important materials than monometallic nanostructures, and have much more interesting potential applications in various fields, including catalysis and electronics. In this work, we demonstrate the facile synthesis of core‐shell nanotube array catalysts consisting of Pt thin layers as the shells and Ni nanotubes as the cores. The porous Ni@Pt core‐shell nanotube arrays were fabricated by ZnO nanorod‐array template‐assisted electrodeposition, and they represent a new class of nanostructures with a high electrochemically active surface area of 50.08 m2 (g Pt)?1, which is close to the value of 59.44 m2 (g Pt)?1 for commercial Pt/C catalysts. The porous Ni@Pt core‐shell nanotube arrays also show markedly enhanced electrocatalytic activity and stability for methanol oxidation compared with the commercial Pt/C catalysts. The attractive performances exhibited by these prepared porous Ni@Pt core‐shell nanotube arrays make them promising candidates as future high‐performance catalysts for methanol electrooxidation. The facile method described herein is suitable for large‐scale, low‐cost production, and significantly lowers the Pt loading, and thus, the cost of the catalysts.  相似文献   

14.
A protein imprinting approach for the synthesis of core–shell structure nanoparticles with a magnetic core and molecularly imprinted polymer (MIP) shell was developed using a simple distillation–precipitation polymerization method. In this work, Fe3O4 magnetic nanoparticles were first synthesized through a solvothermal method and then were conveniently surface‐modified with 3‐(methacryloyloxy)propyltrimethoxylsilane as anchor molecules to donate vinyl groups. Next a high‐density MIP shell was coated onto the surface of the magnetic nanoparticles by the copolymerization of functional monomer acrylamide (AAm), cross‐linking agent N,N′‐methylenebisacrylamide (MBA), the initiator azodiisobutyronitrile (AIBN), and protein in acetonitrile heated at reflux. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanoparticles were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and rebinding experiments. The resulting MIP showed a high adsorption capacity (104.8 mg g?1) and specific recognition (imprinting factor=7.6) to lysozyme (Lyz). The as‐prepared Fe3O4@Lyz‐MIP nanoparticles with a mean diameter of 320 nm were coated with an MIP shell that was 20 nm thick, which enabled Fe3O4@Lyz‐MIP to easily reach adsorption equilibrium. The high magnetization saturation (40.35 emu g?1) endows the materials with the convenience of magnetic separation under an external magnetic field and allows them to be subsequently reused. Furthermore, Fe3O4@Lyz‐MIP could selectively extract a target protein from real egg‐white samples under an external magnetic field.  相似文献   

15.
Mesoporous carbon (m‐C) has potential applications as porous electrodes for electrochemical energy storage, but its applications have been severely limited by the inherent fragility and low electrical conductivity. A rational strategy is presented to construct m‐C into hierarchical porous structures with high flexibility by using a carbon nanotube (CNT) sponge as a three‐dimensional template, and grafting Pt nanoparticles at the m‐C surface. This method involves several controllable steps including solution deposition of a mesoporous silica (m‐SiO2) layer onto CNTs, chemical vapor deposition of acetylene, and etching of m‐SiO2, resulting in a CNT@m‐C core–shell or a CNT@m‐C@Pt core–shell hybrid structure after Pt adsorption. The underlying CNT network provides a robust yet flexible support and a high electrical conductivity, whereas the m‐C provides large surface area, and the Pt nanoparticles improves interfacial electron and ion diffusion. Consequently, specific capacitances of 203 and 311 F g?1 have been achieved in these CNT@m‐C and CNT@m‐C@Pt sponges as supercapacitor electrodes, respectively, which can retain 96 % of original capacitance under large degree compression.  相似文献   

16.
A novel magnetic rhodium catalyst was prepared through immobilizing Wilkinson's catalyst on the surface of silica‐coated iron oxide nanoparticles. After (thio)diphenylphosphine (─S&─PPh2) was modified on the surface of the silica‐coated iron oxide nanoparticles, tris(triphenylphosphine)rhodium(I) chloride was employed to synthesize the Rh(Cl)(PPh3)2(Ph2P&─S&─) complex, affording a rhodium loading of 0.16 mmol g−1. The Rh(I) organometallic magnetic nanoparticles form a novel class of heterogeneous catalyst which is particularly suitable for the practice of organic synthesis. The prepared system exhibits high catalytic efficiency in Suzuki–Miyaura and Miyaura–Michael reactions in ethanol–water solution. High yield, low reaction times, use of green solvents and non‐toxicity of the catalyst are the main merits of this protocol. Also, magnetic separation is an environmentally friendly alternative for the recovery of the catalyst, since it minimizes energy and catalyst loss by preventing mass loss and oxidation. The produced catalyst was characterized using a variety of techniques.  相似文献   

17.
In this study, a method is developed to fabricate Fe3O4@C particles with a coaxial and penetrated hollow mesochannel based on the concept of “confined nanospace pyrolysis”. The synthesis involves the production of a polydopamine coating followed by a silica coating on a rod‐shaped β‐FeOOH nanoparticle, and subsequent treatment by using confined nanospace pyrolysis and silica removal procedures. Typical coaxial hollow Fe3O4@C possesses a rice‐grain morphology and mesoporous structure with a large specific surface area, as well as a continuous and flexible carbon shell. Electrochemical tests reveal that the hollow Fe3O4@C with an open‐ended nanostructure delivers a high specific capacity (ca. 864 mA h g?1 at 1 A g?1), excellent rate capability with a capacity of about 582 mA h g?1 at 2 A g?1, and a high Coulombic efficiency (>97 %). The excellent electrochemical performance benefits from the hollow cavity with an inner diameter of 18 nm and a flexible carbon shell that can accommodate the volume change of the Fe3O4 during the lithium insertion/extraction processes as well as the large specific surface area and open inner cavity to facilitate the rapid diffusion of lithium ions from electrolyte to active material. This fabrication strategy can be used to generate a hollow or porous metal oxide structure for high‐performance Li‐ion batteries.  相似文献   

18.
The in situ tracking of the pyrolysis of a binary molecular cluster [Zn73‐CH3O)6(L)6][ZnLCl2]2 is presented with one brucite disk and two mononuclear fragments (L=mmimp: 2‐methoxy‐6‐((methylimino)‐methyl)phenolate) to porous carbon using TG‐MS from 30 to 900 °C. Following up the spilled gas product during the decomposed reaction of zinc cluster along the temperature rising, and in conjunction with XRD, SEM, BET and other materials characterization, where three key steps were observed: 1) cleavage of the bulky external ligand; 2) reduction of ZnO and 3) volatilization of Zn. The real‐time‐dependent phase‐sequential evolution of the remaining products and the processing of pore forming template transformation are proposed simultaneously. The porous carbon structure featuring a uniform nano‐sized pore distribution synthesized at 900 °C with the highest surface area of 1644 m2 g?1 and pore volume of 0.926 cm3 g?1 exhibits the best known capacitance of 662 F g?1 at 0.5 A g?1.  相似文献   

19.
A core‐shell NiAlO@polypyrrole composite (NiAlO@PPy) with a 3D “sand rose”‐like morphology was prepared via a facile in situ oxidative polymerization of pyrrole monomer, where the role of PPy coating thickness was investigated for high‐performance supercapacitors. Microstructure analyses indicated that the PPy was successfully coated onto the NiAlO surface to form a core‐shell structure. The NiAlO@PPy exhibited a better electrochemical performance than pure NiAlO, and the moderate thickness of the PPy shell layer was beneficial for expediting the electron transfer in the redox reaction. It was found that the NiAlO@PPy5 prepared at 5.0 mL L?1 addition amount of pyrrole monomer demonstrated the best electrochemical performance with a high specific capacitance of 883.2 F g?1 at a current density of 1 A g?1 and excellent capacitance retention of 91.82 % of its initial capacitance after 1000 cycles at 3 A g?1. The outstanding electrochemical performance of NiAlO@PPy5 were due to the synergistic effect of NiAlO and PPy, where the uniform network‐like PPy shell with the optimal thickness made electrolyte ions more easily accessible for faradic reactions. This work provided a simple approach for designing organic–inorganic core‐shell materials as high‐performance electrode materials for electrochemical supercapacitors.  相似文献   

20.
A simple, cost‐effective, and easily scalable molten salt method for the preparation of Li2GeO3 as a new type of high‐performance anode for lithium‐ion batteries is reported. The Li2GeO3 exhibits a unique porous architecture consisting of micrometer‐sized clusters (secondary particles) composed of numerous nanoparticles (primary particles) and can be used directly without further carbon coating which is a common exercise for most electrode materials. The new anode displays superior cycling stability with a retained charge capacity of 725 mAh g?1 after 300 cycles at 50 mA g?1. The electrode also offers excellent rate capability with a capacity recovery of 810 mAh g?1 (94 % retention) after 35 cycles of ascending steps of current in the range of 25–800 mA g?1 and finally back to 25 mA g?1. This work emphasizes the importance of exploring new electrode materials without carbon coating as carbon‐coated materials demonstrate several drawbacks in full devices. Therefore, this study provides a method and a new type of anode with high reversibility and long cycle stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号