首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
ABSTRACT

We examined the effect as donors of three aryl β-D-galactosides (i.e. p-nitrophenyl β-D-galactopyranoside, o-nitrophenyl β-D-galactopyranoside and phenyl β-D-galacto-pyranoside) on the regioselectivity and the yield of the synthesis of N-acetyllactosamine obtained from the transglycosylation reaction catalyzed by a crude preparation of β-D-galactosidase from Bacillus circulans at 25 °C, 37 °C and 55 °C, respectively. Using p-nitrophenyl β-D-galactopyranoside the reaction results were fully regiospecific at all the temperatures considered: the maximum molar yield (74%) was obtained at an incubation temperature of 55 °C. Using o-nitrophenyl β-D-galactopyranoside as the donor the reaction was still highly regioselective and the maximum molar yield (50%) was achieved at an incubation temperature also of 55 °C. Using phenyl β-D-galactopyranoside transglycolytic products appear only at an incubation temperature of 55 °C but at very low molar yield (about 14%) and lower regioselectivity.  相似文献   

2.
The first asymmetric reaction catalyzed by chiral spiroborated esters with an O3BN framework was reported. In the presence of 0.1 equivalent of (R,S)-1 or (S,S)-1, acetophenone was reduced by 0.6 equivalent of borane in THF at 0-5℃ for 2 h to give (R)-1-phenylethanol of up to 76% ee and 73% isolated yield. Influence of reaction conditions on the stereoselectivity of the reduction was investigated and a possible catalytic mechanism of the chiral spiroborated esters toward the reduction was also suggested.  相似文献   

3.
A trifunctional benzoxazine, 1,3,5‐tris(3‐phenyl‐3,4‐dihydro‐2H‐benzo[1,3]oxazin‐6‐yl)benzene (T‐Bz) was synthesized and in an effort to reduce its curing temperature (curing maxima at 238 °C), it was mixed with various phenolic nucleophiles such as phenol (PH), p‐methoxy phenol (MPH), 2‐methyl resorcinol (MR), hydroquinone (HQ), pyrogallol (PG), 2‐naphthol (NPH), 2,7‐dihydroxy naphthalene (DHN), and 1,1'‐bi‐2‐naphthol (BINOL). The influence of these phenolic nucleophiles on ring‐opening polymerization temperature of T‐Bz was examined by DSC and FTIR analysis. T‐Bz undergoes a complete ring‐opening addition reaction in the presence of bi‐ and trifunctional phenolic nucleophiles (MR/HQ/PG/DHN) at 140 °C (heated for 3 h) and forms a networked polybenzoxazine (NPBz). The NPBzs showed a high thermal stability with Td20 of 350–465 °C and char yield of 67–78% at 500 °C; however, a diminutive weight loss (6.9–9.8%) was observed at 150–250 °C (Td5: 215–235 °C) due to degradation of phenolic end groups. This article also gives an insight on how the traces of phenolic impurities can alter the thermal properties of pure benzoxazine monomer as well as its corresponding polymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2811–2819  相似文献   

4.
The acid-catalyzed stepwise polymerization of 1,1-diphenylethylene derivatives, p-di(1-phenylvinyl) benzene, bis[p-(1-phenylvinyl)phenyl]methane, 1,2-bis[p-(1-phenylvinyl)phenyl]ethane, bis[p-(1-phenylvinyl)phenyl]ether, and bis[p-(1-phenylvinyl)phenyl]sulfide produced selectively indanic-unit-containing polymers in pertinent conditions. Their molecular weights (M?n) were in the 1600–15, 700 region after the fractionation in hot ethnol. Melting points were in the 214–281°C region. They dissolved fairly well in conventional solvents like benzene, tetrahydrofuran, and carbon tetrachloride. According to TGA they started to decompose at 397–432°C and showed 10% weight loss at 478–502°C in air at a heating rate of 5°C/min. Focusing on the thermostability, we report on their physical properties.  相似文献   

5.
A new benzoxazine aldehyde group containing monomer 3‐phenyl‐6‐formyl‐3, 4‐dihydro‐2H‐1, 3‐benzoxazine (Ald‐B) was synthesized via the Mannich reaction of formaldehyde, p‐hydroxybenzaldehyde, and aniline. The viscosities and curing behavior of the resins were studied. The results indicated that Ald‐B has an initial viscosity lower than 0.110 Pa s at 90°C and the maximum temperature of the exotherm was at 196°C. Dynamic mechanical analysis (DMA) of the copolymer of Ald‐B and methylenedianiline‐type bis‐benzoxazine (B‐BOZ) showed only one Tg of 251°C and high crosslink density in the matrix. The thermal stability of the copolymer was improved noticeably and the char yield at 800°C is 68.4%. The tensile strength and flexural strength of this resin cast are 72 and 137 MPa, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Thiophenol and p‐nitrothiophenol were evaluated as promoters for the ring opening polymerization of benzoxazine. The ring‐opening polymerization of p‐cresol type monofunctional N‐phenyl benzoxazine 1a with 10 mol % of thiophenols proceeded at 150 °C, leading to the high conversion of 1a more than 95% within 5 h, whereas the polymerization of 1a without thiophenols did not proceed under the same conditions. The promotion effect of the thiophenols on curing of bisphenol‐A type N‐phenyl benzoxazine 1b was also investigated. In the differential scanning calorimetric (DSC) analysis of the polymerization of 1b at 150 °C without using any promoters, an exothermic peak attributable to the ring‐opening reaction of benzoxazine was observed after 8 h. In contrast, in the DSC analysis of the polymerization of 1b with addition 20 mol % of p‐nitrothiophenol, an exothermic peak was observed within 2 h, to clarify the significant promoting effect of p‐nitrothiophenol. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2523–2527  相似文献   

7.
Polyisocyanurates have been successfully prepared by the thermal rearrangement of polycyanurates, which were obtained from 2,4‐dichloro‐6‐methoxy‐1,3,5‐triazine and bisphenol monomers. The thermal rearrangement was carried out in the presence of a small amount of tetrabutylammonium bromide (TBAB) as a catalyst at 200 °C for 30 or 60 min in an argon atmosphere, and the degree of arrangement was greater than 95%. Transparent and amorphous polyisocyanurate films were obtained and showed a good thermal stability with a 5% weight loss temperature above 340 °C in nitrogen and the glass transition temperature above 210 °C. Films with a 10‐µm thickness exhibited an excellent transparency above 90% at 400 nm. Furthermore, the thermal rearrangement of 2,6‐bis(4‐methoxyphenyl)‐6‐methoxy‐1,3,5‐triazine to 1,3‐bis(4‐methoxyphenyl)‐5‐methyl‐1,3,5‐triazinane‐2,4,6‐trione was investigated in detail. It was found that the complete thermal rearrangement was successfully accomplished in the presence of 2 wt % TBAB at 150 °C for 20 min in an argon atmosphere. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 692–698  相似文献   

8.
A new silica‐supported biopolymer‐metal complex, silica‐supported chitosan‐iron‐nickel complex was prepared by a very simple method. This complex catalyst can be used as a catalyst in the asymmetric hydrogenation of propiophenone to (R)‐(+)‐1‐phenyl‐1‐propanol and acetophenone to (R)‐(+)‐1‐phenyl ethanol in 91.7 and 77.7% optical yields, respectively, at 110°C and under 70 kg/cm2 pressure. The catalyst could be reused several times without any remarkable change in the catalytic activity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The radical polymerization of N‐(p‐vinylbenzyl)‐N‐vinylacetamide ( 1 ) prepared by the reaction of N‐vinylacetamide with p‐chloromethylstyrene was carried out by using radical initiators such as AIBN or BPO in benzene, chlorobenzene, or bulk. As a result, poly 1 was successfully isolated by dialysis (yield, 10–36%). The crosslinking reaction of poly 1 was carried out at 60–100 °C for 8 h. By using a radical initiator such as AIBN or BPO (3 mol %), the crosslinking reaction proceeded (yield, 63–79%). Moreover, the crosslinking reaction of poly 1 proceeded at 100 °C without a radical initiator in 50% yield. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2714–2723, 2006  相似文献   

10.
A highly efficient Pd/C-catalyzed ligandless, heterogeneous Suzuki reaction of p-(un)substituted phenyl halide with (p-substituted phenyl)boronic acid in DMF/H2O solvent in a short reaction time (0.5 h) at 75 ℃ was developed. The key for such a catalytic system was the addition of 1 equivalent of tetrabutylammonium bromide. A wide variety of substituents can be tolerated and high yields of cross coupling products were achieved. The palladium catalyst can be easily recovered and reused without significantly decreasing its efficiency.  相似文献   

11.
A micro flow system consisting of micromixers and microtube reactors provides an effective method for the introduction of two electrophiles onto p‐, m‐, and o‐dibromobenzenes. The Br–Li exchange reaction of p‐dibromobenzene with nBuLi can be conducted by using the micro flow system at 20 °C, although much lower temperatures (p‐bromophenyllithium was allowed to react with an electrophile in the micro flow system at 20 °C. The p‐substituted bromobenzene thus obtained was subjected to a second Br–Li exchange reaction followed by reaction with a second electrophile at 20 °C in one flow. A similar transformation can be carried out with m‐dibromobenzene by using the micro flow system. However, the Br–Li exchange reaction of o‐dibromobenzene followed by reaction with an electrophile should be conducted at ?78 °C to avoid benzyne formation. The second Br–Li exchange reaction followed by reaction with an electrophile can be carried out at 0 °C. By using the present method, a variety of p‐, m‐, and o‐disubstituted benzenes were synthesized in one flow at much higher temperatures than are required for conventional batch reactions.  相似文献   

12.
Reaction of 6‐phenyl‐4‐thioxo‐1,3,5‐triazine‐2‐one with alkyl halide in the presence of 1 equiv. of sodium hydroxide resulted in 4‐alkylthio‐6‐phenyl‐1,3,5‐triazine‐2‐one in good yield, whereas the above reaction provided 2‐alkoxyl‐4‐alkylthio‐6‐phenyl‐1,3,5‐triazine in the presence of 2 equiv. of sodium hydroxide. 6‐Phenyl‐4‐thioxo‐1,3,5‐triazine‐2‐one was oxidized with hydrogen peroxide to give 6‐phenyl‐1,3,5‐triazine‐2,4‐dione. Further treatment with ethyl bromoacetate or (substituted) benzyl bromides yielded 2,4‐dialkoxy‐6‐phenyl‐1,3,5‐triazines. At the same time, a small amount of 2‐dimethylamino‐4‐alkoxy‐6‐phenyl‐1,3,5‐triazines were isolated. Preliminary bioassays indicate that the title compounds possess good activities against tobacco mosaic virus. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:542–545, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10189  相似文献   

13.
Thermally latent reaction of a copolymer ( P1 ) bearing hemiacetal ester and n‐butyl methacrylate moieties and glycidyl phenyl ether ( 2 ) was catalyzed by bis(p‐methoxybenzylidene)‐1,2‐diiminoethane/zinc chloride complex (ZnCl2/ 3 ) at 30–150 °C for 6 h. No reaction of P1 and 2 took place below 70 °C, and it smoothly proceeded above 120 °C. The latencies and activities mean that ZnCl2/ 3 meets both the high latencies at ambient conditions and the high activities at desired temperatures. Thermal crosslinking reaction employing multifunctional derivatives was carried out using ZnCl2/ 3 at 140 °C for 6 h to afford a networked polymer in high yields. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3682–3689, 2008  相似文献   

14.
We describe the synthesis of a layered zinc hydroxide‐dodecyl sulfate organic–inorganic hybrid nanocomposite as a new solid‐phase microextraction fiber. The fiber coating can be prepared easily in a short time and the reaction is at room temperature; it is mechanically stable and exhibits relatively high thermal stability. The synthesized layered zinc hydroxide‐dodecyl sulfate nanocomposite was successfully prepared and immobilized on a stainless steel wire and evaluated for the extraction of aromatic compounds from aqueous sample solutions in combination with gas chromatography and mass spectrometry. The method yields good results for some validation parameters. Under optimum conditions (extraction time: 15 min, extraction temperature: 50°C, desorption time: 1 min, desorption temperature: 250°C, salt concentration: 0.5 g/mL), the limit of detection and dynamic linear range were 0.69–3.2 ng/L and 10–500 ng/L, respectively. The method was applied to the analyses of benzene, toluene, ethylbenzene, and o‐, p‐, and m‐xylenes in two real water samples collected from the Aji river and Mehran river, Tabriz, Iran. Under optimum conditions, the repeatability and reproducibility for one fiber (n = 3), expressed as the relative standard deviation, was 3.2–7.3% and 4.2–11.2% respectively. The fibers are thermally stable and yield better recoveries than conventional methods of analysis.  相似文献   

15.
Electrocarboxylation of acetophenone with CO2 to obtain 2‐hydroxy‐2‐phenylpropionic acid was carried out in acetonitrile solution containing 0.1 mol·L?1 tetraethylammonium bromide. Influences of the nature of the electrodes, the working potential, the passed charge and the concentration of acetophenone on the electrocarboxylation were studied. After optimizing the synthetic parameters, the maximal isolated yield reached 73.0% on Mg‐stainless steel couple electrodes under potentiostatic electrolysis until 2.2 F·mol?1 of charge was passed at 25 °C. The reduction of acetophenone was studied by cyclic voltammetry and the mechanism has been proposed on the basis of the results.  相似文献   

16.
In this work, the role of phenoxy radicals in polychlorinated dibenzo‐p‐dioxins and polychlorinated dibenzofurans (PCDD/F) formation was investigated by studying the slow oxidation of 2‐chlorophenol (2‐CP) and 2‐chloroanisole (2‐CA) at a gas‐phase concentration of 4 ppm (~2.1 × 104 μg/m3) over a temperature range of 400–800°C. Residence times were maintained at 2.0 ± 0.10 s. PCDD/F reaction products were dibenzofuran, dibenzo‐p‐dioxin, 4‐chlorodibenzofuran, 1‐chlorodibenzo‐p‐dioxin, 4,6‐dichlorodibenzofuran, and 1,6‐dichlorodibenzo‐p‐dioxin (1,6‐DCDD). Major products observed in these experiments were 2,6‐dichlorophenol, 3‐phenyl‐2‐propenal, 1‐indanone, 1,3‐isobenzofurandione, and 3‐phenyl‐2‐propenoyl chloride. The 2‐CP and 2‐CA experiments, along with the variable concentration 2‐CA experiments, showed that the concentration of radicals present in the oxidation system has a significant effect on the PCDD/F product distribution and ultimately the PCDD/PCDF ratio. Also, the observation of dichlorinated phenoxy phenol and dichlorinated dihydroxybiphenyl, the proposed intermediate species in the radical–radical mechanism, suggests that radical–radical mechanism dominates gas‐phase PCDD/F formation. This information will be helpful in constructing a detailed kinetic mechanism of PCDD/F formation/destruction in combustor postcombustion zone. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 531–541, 2002  相似文献   

17.
A diamine monomer II , 2,5‐bis(4‐aminophenoxy)biphenyl, was prepared through a nucleophilic substitution reaction of phenylhydroquinone and p‐chloronitrobenzene in the presence of potassium carbonate in N,N‐dimethylformamide, followed by catalytic reduction with hydrazine and Pd/C. A series of all‐aromatic, organosoluble polyimides bearing pendent phenyl groups were synthesized from the diamine with six kinds of commercial dianhydrides via a conventional two‐stage process. For improving solubility of polypyromellitimide, copolypyromellitimides with arbitrary solubilities were prepared from II and a pair of dianhydrides, which were mixed at certain molar ratios. These polymers showed good solubilities in N‐methyl‐2‐pyrrolidone and m‐cresol. The softening temperatures of these polyimides were recorded between 206 and 269 °C. Polymers had glass‐transition temperatures at 230–286 °C and 10% weight‐loss temperatures above 521 °C in air or nitrogen atmospheres. Their films had high tensile moduli and strengths. Excellent properties of these polyimides are attributed to the incorporation of the pendent phenyl group in diamine II . © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 429–438, 2002; DOI 10.1002/pola.10116  相似文献   

18.
A mixture of acridine and a pyrazolone derivative was reacted in the solid state (without solvent). It is proposed that the enol tautomer (the C4‐position) of the pyrazolone derivative attacks the C9‐position of acridine through a nucleophilic reaction resulting in products where the C4‐position of pyrazolone is connected to the C9‐position of acridine. When the reaction of 3‐methyl‐1‐phenyl‐5‐pyrazolone and acridine was carried out at low temperature (25°–50°), the reaction product was obtained even when the majority of the reaction mixture had not melted. The same reaction was also carried out in the presence of an ultrasonic wave at same temperature (25°–50°) and the reaction product was obtained in high yield. Under ultrasonic conditions, the reaction mixture was not melted. However, the interface between 3‐methyl‐1‐phenyl‐5‐pyrazolone and acridine gradually changed from white to black. In this reaction, the dihydroacridine dimer is not obtained.  相似文献   

19.
The asymmetric catalytic addition of alcohols (phenols) to non‐activated alkenes has been realized through the cycloisomerization of 2‐allylphenols to 2‐methyl‐2,3‐dihydrobenzofurans (2‐methylcoumarans). The reaction was catalyzed by a chiral titanium–carboxylate complex at uncommonly high temperatures for asymmetric catalytic reactions. The catalyst was generated by mixing titanium isopropoxide, the chiral ligand (aS)‐1‐(2‐methoxy‐1‐naphthyl)‐2‐naphthoic acid or its derivatives, and a co‐catalytic amount of water in a ratio of 1:1:1 (5 mol % each). This homogeneous thermal catalysis (HOT‐CAT) gave various (S)‐2‐methylcoumarans with yields of up to 90 % and in up to 85 % ee at 240 °C, and in 87 % ee at 220 °C.  相似文献   

20.
An allyl‐containing diphenol, 1‐(3‐allyl‐4‐hydroxyphenyl)‐1‐(4‐hydoxyphenyl)‐1‐(6‐oxido‐6H ‐dibenz[c,e][1,2]oxaphosphorin‐6‐yl)ethane (1) , was prepared from a one‐pot reaction of 9,10‐dihydro‐oxa‐10‐phosphaphenanthrene‐10‐oxide, 4‐hydroxyacetophenone, and 2‐allylphenol in the presence of p‐toluenesulfonic acid monohydrate. Then, an allyl‐containing dietheramine, 1‐(4‐(4‐aminophenoxy)phenyl)‐1‐(3‐allyl 4‐(4‐aminophenoxy)‐phenyl)‐1‐(6‐oxido‐6H‐dibenz[c,e][1,2] oxaphosphorin‐6‐yl)ethane (3) , was prepared from the nucleophilic substitution of (1) with 4‐fluoronitrobenzene, followed by the reduction of the dinitro groups by Fe/HCl. A flexible polyetherimide (PEI) (4) with a curable characteristic was prepared from the condensation of (3) and 4,4′‐oxydiphthalic anhydride (ODPA) in m‐cresol in the presence of isoquinoline. Curing PEI (4) at 300 °C leads to PEI (5) , which exhibits much a higher Tg value (307 °C) and a lower coefficient of thermal expansion (CTE) (29 ppm/°C) than PEI (4) (Tg = 253 °C, CTE 52 ppm/°C). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号