首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenalenone (PN) is a very efficient singlet oxygen sensitiser in a wide range of solvents. This work uses ab initio quantum chemical calculations (CASSCF/CASPT2 protocol) to study the mechanism for populating the triplet state of PN responsible for this reaction, the (3)(π-π*) state. To describe in detail this reaction path, the singlet and triplet low-lying excited states of PN have been studied, the critical points of the potential energy surfaces corresponding to these states located and the vertical and adiabatic energies calculated. Our results show that, after the initial population of the S(2) excited state of (π-π*) character, the system undergoes an internal conversion to the (1)(n-π*) state. After populating the dark S(1) state, the system relaxes to the (1)(n-π*) minimum, but rapidly populates the triplet manifold through a very efficient intersystem crossing to the (3)(π-π*) state. Although the population of the minimum of this triplet state is strongly favoured, a conical intersection with the (3)(n-π*) surface opens an internal conversion channel to this state, a path accessible only at high temperatures. Radiationless deactivation processes are ruled out on the basis of the high-energy barriers found for the crossings between the excited states and the ground state. Our computational results satisfactorily explain the experimental findings and are in very good agreement with the experimental data available. In the case of the frequency of fluorescence, this is the first time that these data have been theoretically predicted in good agreement with the experimental results.  相似文献   

2.
The dynamics of the excited states of 1-(p-nitrophenyl)-2-(hydroxymethyl)pyrrolidine (p-NPP) has been investigated using the subpicosecond transient absorption spectroscopic technique in different kinds of solvents. Following photoexcitation using 400 nm light, conformational relaxation via twisting of the nitro group, internal conversion (IC) and the intersystem crossing (ISC) processes have been established to be the three major relaxation pathways responsible for the ultrafast deactivation of the excited singlet (S(1)) state. Although the nitro-twisting process has been observed in all kinds of solvents, the relative probability of the occurrence of the other two processes has been found to be extremely sensitive to solvent polarity, because of alteration of the relative energies of the S(1) and the triplet (T(n)) states. In the solvents of lower polarity, the ISC is predominant over the IC process, because of near isoenergeticity of the S(1)(ππ*) and T(3)(nπ*) states. On the other hand, in the solvents of very large polarity, the energy of the S(1)(ππ*) state becomes lower than those of both the T(3)(nπ*) and T(2)(nπ*/ππ*) states, but those of the T(1)(ππ*) state and the IC process to the ground electronic (S(0)) state are predominant over the ISC, and hence the triplet yield is nearly negligible. However, in the solvents of medium polarity, the S(1) and T(2) states become isoenergetic and the deactivation of the S(1) state is directed to both the IC and ISC channels. In the solvents of low and medium polarity, following the ISC process, the excited states undergo IC, vibrational relaxation, and solvation in the triplet manifold. On the other hand, following the IC process in the Franck-Condon region of the S(0) state, the vibrationally hot molecules with the twisted nitro group subsequently undergo the reverse nitro-twisting process via dissipation of the excess vibrational energy to the solvent or vibrational cooling.  相似文献   

3.
The CASSCF and CASPT2 methodologies have been used to explore the potential energy surfaces of lumisantonin in the ground and low-lying triplet states along the photoisomerization pathways. Calculations indicate that the (1)(nπ*) state is the accessible low-lying singlet state with a notable oscillator strength under an excitation wavelength of 320 nm and that it can effectively decay to the (3)(ππ*) state through intersystem crossing in the region of minimum surface crossings with a notable spin-orbital coupling constant. The (3)(ππ*) state, derived from the promotion of an electron from the π-type orbital mixed with the σ orbital localized on the C-C bond in the three-membered alkyl ring to the π* orbital of conjugation carbon atoms, plays a critical role in C-C bond cleavage. Based on the different C-C bond rupture patterns, the reaction pathways can be divided into paths A and B. Photolysis along path A arising from C1-C5 bond rupture is favorable because of the dynamic and thermodynamic preferences on the triplet excited-state PES. Path B is derived from the cleavage of the C5-C6 bond, leading first to a relatively stable species, compared to intermediate A-INT formed on the ground state PES. Accordingly, path B is relatively facile for the pyrolytic reaction. The present results provide a basis to interpret the experimental observations.  相似文献   

4.
We have performed a computational study on the properties of a series of heterocycles bearing two adjacent heteroatoms, focusing on the structures and electronic properties of their first excited triplet states. If the heteroatoms are both heavy chalcogens (S, Se, or Te) or isoelectronic species, then the lowest excited triplet state usually has (π*, σ*) character. The triplet energies are fairly low (30-50 kcal mol(-1)). The (π*, σ*) triplet states are characterized by a significantly lengthened bond between the two heteroatoms. Thus, in 1,2-dithiolane (1b), the S-S bond length is calculated to be 2.088 ? in the singlet ground state and 2.568 ? in the first triplet excited state. The spin density is predicted to be localized almost exclusively on the sulfur atoms. Replacing one heavy chalcogen atom by an oxygen atom or an NR group results in a significant destabilization of the (π*, σ*) triplet excited state, which then no longer is lower in energy than an open-chain biradical. The size of the heterocyclic ring also contributes to the stability of the (π*, σ*) triplet state, with five-membered rings being more favorable than six-membered rings. Benzoannulation, finally, usually lowers the energy of the (π*, σ*) triplet excited states. If one of the heteroatoms is an oxygen or nitrogen atom, however, the corresponding lowest triplet states are better described as σ,π-biradicals.  相似文献   

5.
The quantum chemical simulation of the ground and electron-excited states of diverse complexes of fluorescent probe 4-dimethylaminochalcone (DMAC) and water in vacuo was performed by the HF/MP2 and RI-CC2 methods. Molecules of the DMAC probe and water can form five types of stable complexes. The geometries corresponding to the potential energy minimum and dipole moments for two lowest singlet and one lowest triplet states were calculated for each type of the complexes. The partial charges on the DMAC atoms and their changes due to the intramolecular charge transfer upon photoexcitation were determined. The coordination of the water molecule at the carbonyl group of DMAC is preferable in vacuo. The formation of hydrogen bonds between the carbonyl group of DMAC and water molecules decreases the energy of the excited state of the complex 1(π, π*), due to which the fluorescence yield increases upon photoexcitation. The calculation results are confirmed by the experimental data on studying the fluorescence of the probe in binary mixtures of benzene and alcohols.  相似文献   

6.
The molecular structure of the tungsten-benzylidyne complex trans-W(≡CPh)(dppe)(2)Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d(xy))(2) ground state and luminescent triplet (d(xy))(1)(π*(WCPh))(1) excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W→P π-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d(xy))(1)-configured 1(+), and (d(xy))(2) [W(CPh)(dppe)(2)(NCMe)](+) (2(+)). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 ? in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M(≡E)L(n) (E = O, N) compounds with analogous (d(xy))(1)(π*(ME))(1) excited states is due to the π conjugation within the WCPh unit, which lessens the local W-C π-antibonding character of the π*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1(+), and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.  相似文献   

7.
《Chemical physics letters》2006,417(1-3):211-216
Photochemical properties of photoinduced ω-bond dissociation in p-phenylbenzoylbenzyl phenyl sulfide (PPS) having the lowest triplet state (T1) of π,π* character in solution were investigated by time-resolved EPR and laser flash photolysis techniques. PPS was found to undergo photoinduced ω-bond cleavage in the excited lowest singlet state (S1(n,π*)) with a quantum yield (Φrad) of 0.15 for the radical formation, which was independent of excitation wavelengths. Based on the facts of the observation of the absorption spectrum of triplet PPS upon triplet sensitization of xanthone, and absence of CIDEP signal, ω-cleavage was shown to be absent in the T1(π,π*) state of PPS. Considering the electronic character of the excited and dissociative states of PPS, a schematic energy diagram for the ω-bond dissociation of PPS was shown.  相似文献   

8.
Restriction of intramolecular motion (RIM), as the working mechanism of aggregation‐induced emission (AIE), cannot fully explain some heteroatom‐containing systems. Now, two excited states are taken into account and a mechanism, restriction of access to dark state (RADS), is specified to elaborate RIM and complete the picture of AIE mechanism. A nitrogen‐containing molecule named APA is chosen as a model compound; its weak fluorescence in solution is ascribed to the easy access from the bright (π,π*) state to the close‐lying dark (n,π*) state. By either metal complexation or aggregation, the dark state is less accessible due to restriction of the molecular motion leading to the dark state and elevation of the dark state energy, thus the bright state emission is restored. RADS is powerful in elucidating the AIE effect of molecules with excited states favoring non‐radiative decay, including overlap‐forbidden states such as (n,π*) and CT states, spin‐forbidden triplet states, and so on.  相似文献   

9.
Squaraines (SQs) with tunable emission in the solid state is of great importance for various demands; however a remaining challenge is emission quenching upon aggregation. Herein, a unique SQ, named as CIEE-SQ, is designed to exhibit strong emission in crystal, undergoing crystallization-induced reverse from dark 1(n+σ,π*) to bright 1(π,π*) excited states. Such an excited state of CIEE-SQ can be subtly tuned by molecular conformation changes during the unexpected temperature-triggered single-crystal to single-crystal (SCSC) reversible transformation. Furthermore, co-crystallization between CIEE-SQ and chloroform largely stabilize the 1(π,π*) state, enhancing the transition dipole moment and decreasing the reorganization energy to boost the fluorescence, which is promising in data encryption and decryption.  相似文献   

10.
Abstract— Pyrazinopsoralen (PzPs), a new monofunctional psoralen, has a UV absorption spectrum similar to other psoralens except that it absorbs more strongly in the long-UVA than 8-methoxypsoralen. The solvent effects on the UV absorption and fluorescence emission spectra indicate that the lowest excited singlet state is the π,π* state like other psoralen derivatives. It shows a much lower fluorescence quantum yield (0.0008 in ethanol at room temperature) than the other psoralens as expected by the increased proximity effect (vibronic perturbation) due to close 1(n,π*) to 1(π,π*) states. The fluorescence lifetime was 1.05 ns in methylcyclohexane with a single exponential decay, while more than two components were observed in other solvents with the short-lived component being the major (>95%). The triplet state of PzPs could not be detected by phosphorescence, laser flash excitation (T-T absorption) and singlet oxygen formation probably due to very low φisc, or short lifetime of the triplet state (τT) caused by the fast T1→ S0 intersystem crossing.  相似文献   

11.
The well-known benzophenone intersystem crossing from S(1)(n,pi*) to T(1)(n,pi*) states, for which direct transition is forbidden by El-Sayed rules, is reinvestigated by subpicosecond time-resolved absorption spectroscopy and effective data analysis for various excitation wavelengths and solvents. Multivariate curve resolution alternating least-squares analysis is used to perform bilinear decomposition of the time-resolved spectra into pure spectra of overlapping transient species and their associated time-dependent concentrations. The results suggest the implication of an intermediate (IS) in the relaxation process of the S(1) state. Therefore, a two step kinetic model, S(1) --> IS --> T(1), is successfully implemented as an additional constraint in the soft-modeling algorithm. Although this intermediate, which has a spectrum similar to the one of T(1)(n,pi*) state, could be artificially induced by vibrational relaxation, it is tentatively assigned to a hot T(1)(n,pi*) triplet state. Two characteristic times are reported for the transition S(1) --> IS and IS --> T(1), approximately 6.5 ps and approximately 10 ps respectively, without any influence of the solvent. Moreover, an excitation wavelength effect is discovered suggesting the participation of unrelaxed singlet states in the overall process. To go further discussing the spectroscopic relevancy of IS and to rationalize the expected involvement of the T(2)(pi,pi*) state, we also investigate 4-methoxybenzophenone. For this neighboring molecule, triplet energy level is tunable through solvent polarity and a clear correlation is established between the intermediate resolved by multivariate data analysis and the presence of a T(2)(pi,pi*) above the T(1)(n,pi*) triplet. It is therefore proposed that the benzophenone intermediate species is a T(1)(n,pi*) high vibrational level in interaction with T(2)(pi,pi*) state.  相似文献   

12.
The Mn-nitrosyl complexes [Mn(PaPy(3))(NO)](ClO(4)) (1; PaPy(3)(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) and [Mn(PaPy(2)Q)(NO)](ClO(4)) (2, PaPy(2)Q(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide) show a remarkable photolability of the NO ligand upon irradiation of the complexes with UV-vis-NIR light [Eroy-Reveles, A. A.; Leung, Y.; Beavers, C. M.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 2008, 130, 4447]. Here we report detailed spectroscopic and theoretical studies on complexes 1 and 2 that provide key insight into the mechanism of NO photolabilization in these compounds. IR- and FT-Raman spectroscopy show N-O and Mn-NO stretching frequencies in the 1720-1750 and 630-650 cm(-1) range, respectively, for these Mn-nitrosyls. The latter value for ν(Mn-NO) is one of the highest transition-metal-NO stretching frequencies reported to this date, indicating that the Mn-NO bond is very strong in these complexes. The electronic structure of 1 and 2 is best described as Mn(I)-NO(+), where the Mn(I) center is in the diamagnetic low-spin state and the NO(+) ligand forms two very strong π backbonds with the d(xz) and d(yz) orbitals of the metal. This explains the very strong Mn-NO bonds observed in these complexes, which even supersede the strengths of the Fe- and Ru-NO bonds in analogous (isoelectronic) Fe/Ru(II)-NO(+) complexes. Using time-dependent density functional theory (TD-DFT) calculations, we were able to assign the electronic spectra of 1 and 2, and to gain key insight into the mechanism of NO photorelease in these complexes. Upon irradiation in the UV region, NO is released because of the direct excitation of d(π)_π* → π*_d(π) charge transfer (CT) states (direct mechanism), which is similar to analogous NO adducts of Ru(III) and Fe(III) complexes. These are transitions from the Mn-NO bonding (d(π)_π*) into the Mn-NO antibonding (π*_d(π)) orbitals within the Mn-NO π backbond. Since these transitions lead to the population of Mn-NO antibonding orbitals, they promote the photorelease of NO. In the case of 1 and 2, further transitions with distinct d(π)_π* → π*_d(π) CT character are observed in the 450-500 nm spectral range, again promoting photorelease of NO. This is confirmed by resonance Raman spectroscopy, showing strong resonance enhancement of the Mn-NO stretch at 450-500 nm excitation. The extraordinary photolability of the Mn-nitrosyls upon irradiation in the vis-NIR region is due to the presence of low-lying d(xy) → π*_d(π) singlet and triplet excited states. These have zero oscillator strengths, but can be populated by initial excitation into d(xy) → L(Py/Q_π*) CT transitions between Mn and the coligand, followed by interconversion into the d(xy) → π*_d(π) singlet excited states. These show strong spin-orbit coupling with the analogous d(xy) → π*_d(π) triplet excited states, which promotes intersystem crossing. TD-DFT shows that the d(xy) → π*_d(π) triplet excited states are indeed found at very low energy. These states are strongly Mn-NO antibonding in nature, and hence, promote dissociation of the NO ligand (indirect mechanism). The Mn-nitrosyls therefore show the long sought-after potential for easy tunability of the NO photorelease properties by simple changes in the coligand.  相似文献   

13.
Squaraines (SQs) with tunable emission in the solid state is of great importance for various demands; however a remaining challenge is emission quenching upon aggregation. Herein, a unique SQ, named as CIEE‐SQ, is designed to exhibit strong emission in crystal, undergoing crystallization‐induced reverse from dark 1(n+σ,π*) to bright 1(π,π*) excited states. Such an excited state of CIEE‐SQ can be subtly tuned by molecular conformation changes during the unexpected temperature‐triggered single‐crystal to single‐crystal (SCSC) reversible transformation. Furthermore, co‐crystallization between CIEE‐SQ and chloroform largely stabilize the 1(π,π*) state, enhancing the transition dipole moment and decreasing the reorganization energy to boost the fluorescence, which is promising in data encryption and decryption.  相似文献   

14.
The electron correlation energies of both the ground and n → π* excited states of methylenimine (CH2NH) are investigated by means of ab initio SCF MO CI calculations. Then n → π* singlet and triplet state energies of methylenimine are obtained through 3461-dimensional CI including the singly, doubly and triply excited configurations. the excitation energy from the ground state to the 1(n → π*) state nearly coincides with that obtained in the framework of the singly excited configuration interaction (SECI) procedure. This result suggests that there is good cancellation of the correlation energy between the ground and the excited singlet sates, proving the usefulness of the SECI method for the excitation energies.  相似文献   

15.
Density functional theory and CASSCF calculations have been used to optimize the geometries of binuclear gold(I) complexes [H(3)PAu(C[triple bond]C)(n)AuPH(3)] (n=1-6) in their ground states and selected lowest energy (3)(pi pi*) excited states. Vertical excitation energies obtained by time-dependent density functional calculations for the spin-forbidden singlet-triplet transitions have exponential-decay size dependence. The predicted singlet-triplet splitting limit of [H(3)PAu(C[triple bond]C)(proportional/variant)AuPH(3)] is about 8317 cm(-1). Calculated singlet-triplet transition energies are in reasonable agreement with available experimental observations. The effect of the heavy atom Au spin-orbit coupling on the (3)(pi pi*) emission of these metal-capped one-dimensional carbon allotropes has been investigated by MRCI calculations. The contribution of the spin- and dipole-allowed singlet excited state to the spin-orbit-coupling wave function of the (3)(pi pi*) excited state makes the low-lying acetylenic triplet excited states become sufficiently allowed so as to appear in both electronic absorption and emission.  相似文献   

16.
This paper describes the results of a study of the photophysical properties of various methyl-angelicins (MA) in solvents of different polarity and proticity. The behavior of their excited singlet and triplet states was investigated by fluorometry and nanosecond laser flash photolysis. On the basis of semiempirical (ZINDO/S-CI) calculations and the solvent effect on the absorption and fluorescence properties, the lowest excited singlet state (S1) is assigned to a partially allowed π, π* state. The close lying S2 state is n,π* in nature. The efficiency of the decay pathways of S1 (fluorescence, intersystem crossing and internal conversion) strongly depends on the energy gap between the S1 and S2 states consistent with the manifestation of “proximity effect.” Thus, MA in cyclohexane decay only through S1→ S0 internal conversion, while in acetonitrile and ethanol, where the n, π* state is located at higher energy, their fluorescence and intersystem crossing increase significantly. The lowest excited triplet states (T1) were characterized in terms of their absorption spectra, decay kinetics, molar absorption coefficients and formation quantum yields. The interaction of T1 MA with molecular oxygen leads to an efficient formation of singlet oxygen, as evidenced by the appearance of characteristic IR phosphorescence centered at 1269 nm.  相似文献   

17.
We describe an aromatic amide skeleton for manipulation of triplet excited states toward bright long-lived blue phosphorescence. Spectroscopic studies and theoretical calculations demonstrated that the aromatic amides can promote strong spin-orbit coupling between (π,π*) and the bridged (n,π*) states, and enable multiple channels to populate the emissive 3(π,π*), as well as facilitate robust hydrogen bonding with polyvinyl alcohol to suppress non-radiative relaxations. Isolated inherent deep-blue (0.155, 0.056) to sky-blue (0.175, 0.232) phosphorescence with high quantum yields (up to 34.7 %) in confined films are achieved. The blue afterglow of the films can last for several seconds and are showcased in information display, anti-counterfeiting, and white light afterglow. Owing to the high population of 3(π,π*) states, the smart aromatic amide skeleton provides an important molecular design prototype to manipulate triplet excited states for ultralong phosphorescence with various colors.  相似文献   

18.
High-resolution absorption spectra of the following diphenylmethylenes (DPMs) dispersed in benzophenone crystals at liquid-helium temperatures are presented: DPM-h10, DPM-d10, 4-chloro-DPM, and 4-bromo-DPM. The substituent effects concerning the electronic structure, transition energy and intensity are discussed. From polarization measurements, the electronic configurations of the ground and the first excited triplet states of these DPMs are assigned as (pπ)1(pσ)1 and (pσ)1(π*)1, respectively. Further studies reveal a second excited triplet state, designated as (pπ)1(π*)1, which lies less than 1000 cm-1 above the first excited triplet state of DPM. Diffuse broad bands appear as common features in all the spectra. Such diffuseness is discussed in terms of electron-phonon coupling of the low-lying excited states.  相似文献   

19.
CNDO/s-CI and VE-PPP methods have been employed to calculate the dipole moments of the bases of nucleic acids in the ground and excited states. A component analysis in terms of μhyb(σ), μch and μπ has been done using the CNDO/s-CI method and these results have been compared with those obtained by the CNDO/2 and IEHT methods. It is observed that while the CNDO/2 and CNDO/s-CI methods give almost the same total dipole moments, component-wise their predictions are very different.Dipole moments of the molecules have also been studied for the lowest excited singlet and triplet π* ← π states. It is observed that the conventional method of calculating dipole moments using changes of only the net charges in the excited state does not give correct results for uracil and thymine, for which experimental results are available. Considering deformed non-planar excited state geometries for these molecules, the observed excited state dipole moments have been explained. A method has been suggested to include the effects of non-planarity while calculating the properties of a complex molecule in a π* ← π excited state. For adenine, guanine and cytosine, the excited state dipole moments are found to be smaller than the ground state values.  相似文献   

20.
The results of the spectroscopic investigation of the steroidal enones 1–6 can be summarized as follows:
  • 1. Direct absorption and phosphorescence excitation techniques have been used to locate the 3(n,π*) states, and in each case it has been found to be the second triplet state.
  • 2. The lowest excited state in each case is assigned as 3(π,π*) state.
  • 3. The diffuseness in the phosphorescence emission from the 3(π,π*) states is attributed to a large change in the molecular geometry upon excitation (probably to a non-planar configuration).
  • 4. The diffuseness in the STn,π* absorption is correspondingly attributed to interaction between the 3(n,π*) and 3(π,π*) states. A summary of the energy levels for these compounds is given in Fig. 4.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号