首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Separation of negatively charged molecules, such as plasmid DNA (pDNA), RNA and endotoxin forms a bottleneck for the development of pDNA vaccine production process. The use of affinity interactions of transition metal ions with these molecules may provide an ideal separation methodology. In this study, the binding behaviour of pDNA, RNA and endotoxin to transition metal ions, either in immobilised or free form, was investigated. Transition metal ions: Cu2+, Ni2+, Zn2+, Co2+ and Fe3+, typically employed in the immobilised metal affinity chromatography (IMAC), showed very different binding behaviour depending on the type of metal ions and their existing state, i.e. immobilised or free. In the alkaline cell lysate, pDNA showed no binding to any of the IMAC chemistries tested whereas RNA interacted significantly with Cu2+-iminodiacetic acid (IDA) and Ni2+-IDA but showed no substantial binding to the rest of the IMAC chemistries. pDNA and RNA, however, interacted to varying degrees with free metal ions in the solution. The greatest selectivity in terms of pDNA and RNA separation was achieved with Zn2+ which enabled almost full precipitation of RNA while keeping pDNA soluble. For both immobilised and free metal ions, ionic strength of solution affected the metal ion-nucleic acid interaction significantly. Endotoxin, being more flexible, was able to interact better with the immobilised metal ions than the nucleic acids and showed binding to all the IMAC chemistries. The specific interactions of immobilised and/or free metal ions with pDNA, RNA and endotoxin showed a good potential, by selectively removing RNA and endotoxin at high efficiency, to develop a simplified pDNA purification process with improved process economics.  相似文献   

2.
A rational approach in the design of selective mesoporous adsorbents   总被引:1,自引:0,他引:1  
Two MCM-41 derived adsorbents have been tailor-made for the separation of silver and copper ions using the hard-soft, acid-base (HSAB) principle as the design guideline. NH2-MCM-41 containing "hard" Lewis base adsorption sites (i.e., RNH2) was prepared for the adsorption of the "hard" Lewis acid, Cu2+, and SH-MCM-41 with a grafted "soft" thiolpropyl base was prepared for the selective removal of Ag+, a "soft" Lewis acid. Single- and binary-component adsorption studies were conducted at different metal concentrations, solution compositions, and pH values. The experimental results showed that SH-MCM-41 has excellent affinity and capacity for silver adsorption and adsorbed only the silver ions with copper remaining in the solution. The selectivity was not affected by the metal concentration and composition, anion, and pH. Under similar experimental conditions, NH2-MCM-41 selectively adsorbed copper from the binary solution. The selectivity of NH2-MCM-41 remained for the copper at different pH values, although the adsorption capacity diminished at lower pH values. The type of anions used affected copper adsorption on NH2-MCM-41 with an increased copper uptake in the presence of the sulfate ions. A simple Freundlich adsorption model was sufficient to describe metal adsorption on SH-MCM-41 and NH2-MCM-41, and the LeVan and Vermeulen model was successfully used to predict the adsorption capacity and selectivity for binary-component adsorptions.  相似文献   

3.
A new chelating compound has been developed for use in the immobilised metal ion affinity chromatographic separation of proteins. The tridentate ligand, sodium N-(2-pyridylmethyl)aminoacetate (carbpyr), 1, was prepared via a one-step synthesis from 2-picolylamine, 3 and then immobilised onto Sepharose CL-4B through the epoxide coupling procedure. The binding behaviour of the resulting IMAC sorbent, following chelation with Cu2+ ions to a density of 152 micromol Cu2+ ions/g gel was characterised by frontal analysis experiments using horse heart myoglobin (HMYO) at pH 7.0 and pH 9.0. From the derived isotherms, the adsorption capacity, q(m), for the binding of HMYO to immobilised Cu2+-N-(2-pyridylmethyl)aminoacetate (im-Cu2+-carbpyr)-Sepharose CL-4B at these pH values was found to be 1.92 and 1.91 micromol/g sorbent, respectively, whilst the dissociation constants K(D) were 0.0092 x 10(-6) M and 0.0062 x 10(-6) M at pH 7.0 and pH 9.0, respectively, indicating that the HMYO-im-Cu2+-N-(2-pyridylmethyl)aminoacetate complex was more stable under alkaline conditions, although the binding capacity in terms of micromol protein/g gel remained essentially unchanged. The selectivity features of the im-Cu2+-carbpyr-Sepharose CL-4B sorbent were further characterised in terms of the binding properties with several human serum proteins at pH 5.0, pH 7.0 and pH 9.0.  相似文献   

4.
Three new IMAC chelating systems, incorporating immobilised xylenyl-bridged bis(1,4,7-triaza-cyclonane) ligands, complexed with Cu(2+) ions to form binuclear species, have been prepared. Their binding properties have been investigated with three small globular proteins (hen egg white lysozyme, horse skeletal muscle myoglobin and horse heart cytochrome c). The effects of buffer pH, ionic strength and composition on the binding behaviour of these proteins to these new IMAC sorbents have been examined and compared with those found for the corresponding immobilized mononuclear copper complex of 1,4,7-triazacyclononane (tacn). Higher protein binding affinities were observed with the Cu(2+)-bis(tacn) sorbents compared to the Cu(2+)-tacn system, consistent with the immobilized binuclear copper(II) species undergoing enhanced coordinative interaction with the surface-exposed histidine residues of these proteins. Moreover, the protein binding characteristics of these IMAC sorbents at higher ionic strengths, such as 1M NaCl, also reflect the presence of the aromatic ring in the bis(tacn) ligands, whereby hydrophobic pi/pi stacking interactions can occur with the proteins.  相似文献   

5.
Our understanding of metal ion adsorption to clay minerals has progressed significantly over the past several decades, and theories have been promulgated to describe and predict the impacts of pH, ionic strength, and background solution composition on the extent of adsorption. Studies evaluating the effects of ionic strength on adsorption typically employ a broad range of background electrolyte concentrations. Measurement of pH in these systems can be inaccurate when pH values are measured with liquid junction pH probes calibrated with standard buffers due to changes in the liquid junction potential between standard, low ionic strength (0.05 M) buffers and high ionic strength solutions (>0.1 M). The objective of this research is to determine the extent of the error in pH values measured at high ionic strength, and to develop an approach for accurately measuring pH over a range of ionic strengths using a combined pH electrode. To achieve this objective, the adsorption of cobalt (10(-5) M) onto gibbsite (10 g/L) from various electrolyte solutions (0.01-1 M) was studied. The pH measurements were determined from calibrations with standard buffers and ionic strength corrected buffer calibrations. The results show a significant effect of the aqueous solution background electrolyte anion and ionic strength on pH measurement. The 0.5 and 1 M ionic strength metal ion adsorption edges shifted to lower pH with increasing ionic strength when pH was calibrated with standard buffers whereas no shift in the adsorption edges was observed when calibrated with ionic strength corrected buffers. Therefore, to obtain an accurate pH measurement, pH calibration should contain the same electrolyte and ionic strength as the samples.  相似文献   

6.
The retention and selectivity of the chromatographic separation of basic (cationic) analytes on a polybutadiene-coated zirconia (PBD-ZrO2) stationary phase have been studied in greater detail than in previous studies. These separations are strongly influenced by the chemistry of the accessible surface of zirconia. In the presence of buffers which contain hard Lewis bases (e.g., phosphate, fluoride, carboxylic acids) zirconia's surface becomes negatively charged due to adsorption of the buffer anion at the hard Lewis acid sites. Consequently, under most conditions (e.g., neutral pH), cationic analytes undergo both hydrophobic and cation-exchange interactions. This mixed-mode retention process generally leads to greater retention factors for cations relative to those on silica-based reversed phases despite the lower surface areas of the zirconia phase, but, more importantly, adsorption of hard Lewis bases can be used to control the chromatographic selectivity for cationic analytes on these zirconia-based stationary phases. In contrast to our prior work, here we show that when mixed-mode retention takes place, both retention and selectivity are easily adjusted by changing the type of hard Lewis base buffer anion, the type of buffer counter-ion (e.g., sodium, potassium, ammonium), the pH, and the ionic strength of the eluent as well as the type and amount of organic modifier.  相似文献   

7.
The binding of titanium(IV) to human serum transferrin in 50 mM Tris with 20 mM bicarbonate and 10 mM citrate at pH 7.4 was studied by UV/vis kinetics and by isothermal titration calorimetry. Ti(IV) citrate, [Ti(C6H4O7)3]8-, employed in this study was previously characterized and delivers the metal to transferrin rapidly, allowing the quantification of the intrinsic binding constants for Ti(IV) to the C- and N-sites of transferrin. The results after correcting for blood plasma conditions (pH 7.4, [HCO3-] = 27 mM) reveal that Ti(IV) binds with greater affinity (log K = 26.8 and 25.7) than Fe(III) (log K = 22.5 and 21.4) to transferrin, a finding not previously observed for other examined metal ions. The strength of metal binding to transferrin correlates with the Lewis acidity of the metal. Ti(IV) is more Lewis acidic than Fe(III) and is nearly the same size. The study also reveals that Ti(IV) binds more tightly to one site than the other, and this difference is due to both entropic and enthalpic contributions. The study has implications for the role of transferrin in the anticancer activity of Ti(IV) drugs and the serum binding of Ti(IV) ions released from implants or imaging reagents.  相似文献   

8.
High-performance metal chelate affinity chromatography [immobilized metal ion affinity chromatography (IMAC)] using Chelating Superose (iminodiacetic acid adsorbent) was investigated for its suitability in purifying phenobarbital-induced rat liver microsomal cytochrome P-450 isozymes (P450) and optimized for preparative purposes. Starting with an 8-aminooctyl-Sepharose fraction of partially purified P450, it was found that only Ni(2+)- and Cu(2+)-charged columns could bind P450. No binding was ever observed when Zn2+, Co2+, Mn2+, Cd2+, Fe3+, Fe2+ or Tl3+ ions were employed. Of eight commonly used elution buffers, imidazole and tryptamine were found to cause some denaturation of P450. For desorption of proteins bound to Ni(2+)-charged columns, the following order of decreasing elution buffer strength was determined: cysteine approximately histidine greater than glycine greater than histamine greater than tryptophan greater than ammonium chloride. During protein desorption with some of these buffers, metal ions were found to bleed from the gel, resulting in P450 denaturation. This could be eliminated by prebleeding the charged columns prior to sample application and had an effect on product recovery and homogeneity. Ni2+ and glycine were chosen as a standard for further optimization involving sample adsorption conditions as influenced by equilibration buffer, detergent, load capacity and flow, gradient and temperature conditions. In this way, potassium phosphate (pH 7.75) and 0.4% Emulgen 911 were used to equilibrate a 1.6-ml column and purify 20-50 nmol of P450 (5-15 mg of protein) within 15 min. One gradient fraction consisted of a single sodium dodecyl sulphate-polyacrylamide gel electrophoresis band as judged by silver staining and represented about 25% of the total P450 applied to the column; total recoveries were usually more than 80%. Comparison with the molecular weights and spectral, catalytic and immunological properties of P450 forms isolated according to established procedures indicated that the form isolated here using Chelating Superose comprises mainly P450 2B1 (PB-B). A method is described for fully automated, programmable column regeneration and sample runs.  相似文献   

9.
Thiophilic adsorbents have been developed using divinyl sulfone or epoxy activated Streamline quartz base matrix. Their capacity and selectivity for binding polyclonal F(ab')2 fragments generated by whole serum proteolysis was tested. Except for epoxy activated guanidine, all the adsorbents displayed high selectivity for F(ab')2 with dynamic binding capacities ranging from 3 to 10 mg/ml of adsorbent. Thiol immobilised ligands adsorbed more F(ab')2 and the recovery was equal to or more than that from amino immobilised ligands. All adsorbents showed good selectivity for IgG and the dynamic binding capacities were better than for F(ab')2.  相似文献   

10.
Transferrins comprise a class of monomeric glycoproteins found in all vertebrates, whose function is iron sequestration and transport. In addition to iron, serum transferrin also binds a variety of other metals and is believed to provide a route for the in vivo delivery of such metals to cells. In the present study, ESI MS is used to investigate interactions between human serum transferrin and two nonferrous metals, indium (a commonly used imaging agent) and bismuth (a component of many antiulcer drugs). While the UV-Vis absorption spectroscopy measurements clearly indicate that both metals bind strongly to transferrin in solution, the metal-protein complex can be detected by ESI MS only for indium, but not for bismuth. Despite the apparently low stability of the transferrin-bismuth complex in the gas phase, presence of such complex in solution can be established by ESI MS indirectly. This is done by monitoring the evolution of charge state distributions of transferrin ions upon acid-induced protein unfolding in the presence and in the absence of the metal in solution. The anomalous instability of the transferrin-bismuth complex in the gas phase is rationalized in terms of conformational differences between this form of transferrin and the holo-forms of this protein produced by binding of metals with smaller ionic radii (e.g., Fe3+ and In3+). The large size of Bi3+ ion is likely to prevent formation of a closed conformation (canonical structure of the holo-protein), resulting in a non-native metal coordination. It is suggested that transferrin retains the open conformation (characteristic of the apo-form) upon binding Bi3+, with only two ligands in the metal coordination sphere provided by the protein itself. This suggestion is corroborated by the results of circular dichroism measurements in the near-UV range. Since the cellular consumption of metals in the transferrin cycle critically depends upon recognition of the holo-protein complex by the transferrin receptor, the noncanonical conformation of the transferrin-bismuth complex may explain very inefficient delivery of bismuth to cells even when a high dosage of bismuth-containing drugs is administered for prolonged periods of time.  相似文献   

11.
Synthetic copolymers of N-vinylcaprolactam (VCL) and N-vinylimidazole (VI) were studied as thermosensitive, reusable displacers for immobilised metal affinity chromatography (IMAC) of proteins. The copolymer with weight-average molecular mass of 11700 g/mol prepared by free radical polymerisation at a 9:1 monomer molar ratio was separated into several fractions by IMAC and thermal precipitation. The fraction with an average VI content of 8.5% was most efficient as a reusable displacer for IMAC of ovalbumin, lysozyme and other proteins of egg white on Cu2+-IDA-Sepharose. The displacer exhibited a sharp breakthrough curve and binding capacity of 16-20 mg/ml gel, depending on the flow-rate. The recovery of egg white proteins in the course of displacement chromatography was >95%. The displacer could be removed quantitatively from the protein fractions by thermal precipitation at 48 degrees C. Co-precipitation of lysozyme with the displacer was minimal in the presence of 3% (v/v) acetonitrile, while the lysozyme enzymatic activity in the supernatant was completely retained. Addition of free imidazole to the mobile phase increased the rate of protein desorption and allowed better separation of egg white proteins and the displacer in the course of chromatography. The displacement profile of the egg white extract consisted of three zones with different distributions of individual proteins characterised by SDS-PAGE. Regeneration of the column was easily performed with 0.02 M EDTA in 0.15 M sodium chloride, pH 8.0, followed by washing with distilled water and reloading with Cu2+. The displacer could also be regenerated by thermal precipitation at 48 degrees C and subsequent dialysis against dilute hydrochloric acid (pH 2.5).  相似文献   

12.
In previous work we demonstrated the improved protein-binding capacity and selectivity of ion-exchange adsorbents displaying a "clustered" rather than random, distribution of surface charges. For example, anion-exchange adsorbents displaying 5 mM of positive charge in the form of 1 mM penta-argininamide show much higher affinity and capacity for alpha-lactalbumin than do adsorbents displaying the same 5 mM total charge in the form of single dispersed argininamide charges. We also found that clustered adsorbents selectively favor proteins with inherent charge clustering. In the present work, "clustered" penta-argininamide adsorbents showed DNA binding capacity comparable to that of conventional dispersed adsorbents with 10-100-fold higher ligand density. We also observed that at moderate ionic strength the DNA affinity of all adsorbents tested increased with salt while RNA affinity decreased, so that selectivity for DNA over RNA was enhanced as salt concentration increased.  相似文献   

13.
Aluminium (iii) is one of the most abundant metal ions found in soil. Typically, Al(+3) is bound to minerals, but its bioavailability and toxicity toward vascular plants increases with increasing soil acidity. Ectomycorrhizal fungi, which live symbiotically on the roots of numerous woody plants, often confer Al(+3) resistance to host plants by reducing metal availability to the plant by unknown mechanisms. A potential mechanism of detoxification is binding of the Al(+3) by organic compounds that are exuded by the fungi into the surrounding soil and solution. A novel method has been developed to purify and characterize Al(+3) binding ligands from Pisolithus tinctorius exudate solutions using Al(+3) immobilized metal affinity chromatography (IMAC), reversed phase chromatography, and mass spectrometry. Fungal exudates produced by P. tinctorius exhibit a strong binding capacity for Al(+3), allowing their selective enrichment and collection using this IMAC method. Elution of the ligands requires the use of high pH. RP-HPLC separation and elemental analysis of the IMAC elutent indicates that the Al(+3) and the exudate ligands both elute from the column but are not bound in a complex. Thus, reversed phase HPLC at pH 10 is used for separation of the ligands and Al(+3) prior to MS analysis. The strongest binding IMAC fraction is analyzed by electrospray ionization mass spectrometry in positive and negative ion modes. This report provides new methods for the direct purification and analysis of naturally occurring ligands that bind hard metal ions.  相似文献   

14.
介绍了固定金属离子亲和色谱法(IMAC)的方法原理、金属螯合柱的制备、固定金属离子与蛋白质的相互作用以及影响这些作用的因素、不同色谱条件下各种作用力对蛋白质保留值的贡献、蛋白质的洗脱原理和IMAC在蛋白质分离纯化中的应用,论述了IMAC的特点、不足、克服的方法和今后应解决的问题。  相似文献   

15.
A new method for separation of three forms of superoxide dismutase (SOD) using immobilised metal affinity chromatography (IMAC) is reported. Fe-, Mn- and Cu/Zn-SODs were eluted sequentially from Cu(2+)-IMAC column with an increasing gradient of a counter ion (NH+4) run in combination with an increasing pH gradient (6.8-7.8). The combined gradient elution method resulted in separation of SODs with high resolution, the three proteins being eluted in electrophoretically homogeneous forms. Similar preparation could not be achieved by either increasing gradient of a counter ion or decreasing pH gradients used separately. The described methodology has been successfully applied for separation of three SODs from a protozoan parasite, indicating that this combined gradient elution system for IMAC offers new possibilities for the high-resolution separation of proteins exhibiting only minor differences in their amino acid composition and structure.  相似文献   

16.
Immobilized metal affinity chromatography (IMAC) of solubilized, photosystem II (PS II) enriched particles from the thermophilic cyanobacterium Synechococcus elongatus was studied. A chelating Sepharose Fast Flow column was charged with various metal ions (Mn2+, Fe2+, Fe3+, Ni2+, Co2+, Ca2+, Sr2+, Zn2+ and Cu2+) and their affinity to photosystem I (PS I) and PS II was examined. Among all the metal ions tested, only copper was able to bind the two protein complexes. For elution of the column, a pH gradient, a pH step gradient and gradients of imidazole, amino acids, organic acids and various other eluents were tested; only the pH step gradient, which selectively eluted PS II at a pH between 6 and 5, was useful for the separation of PS I and PS II. All other gradients proved to be inappropriate for the separation of these two photosystems. Mechanisms of protein elution by these compounds are discussed. Alternatively, a separation of PS I and PS II at pH 7.5 could be achieved when an IMAC column was used on which the free coordination positions of the bound copper ions were occupied by imidazole. When solubilized photosystems were loaded on to this column, PS I replaced imidazole and remained bound on the column, whereas PS II was highly enriched in the effluent.  相似文献   

17.
Lei G  Liu L  Xiong X  Wei Y  Zheng X 《Journal of separation science》2008,31(16-17):3002-3008
A new chelating compound has been developed for use in the immobilized metal affinity chromatographic (IMAC) separation of proteins. The bidentate ligand, alpha-amino phenylalanine tetrazole, 4, was synthesized via a five-step synthesis from N-fluorenylmethoxycarbonyl phenylalanine and then immobilized onto silica through the epoxide coupling procedure. The binding behavior of the resulting IMAC sorbent, following chelation with Zn2+ to a density of 183 micromol Zn2+ ions/g silica, was characterized by the retention of proteins in the pH range of 5.0-8.0, and by the adsorption behavior of lysozyme with frontal chromatography at pH 6.0 and 8.0. The prepared column showed the separation ability to four test proteins and the retention time of these proteins increased with an increase in pH. From the derived isotherms, the adsorption capacity, qm, for the binding of lysozyme to immobilized Zn2+-alpha-amino phenylalanine tetrazole-silica was found to be 1.21 micromol/g at pH 6.0 and 1.20 micromol/g sorbent at pH 8.0, respectively, whilst the dissociation constants KD at these pH values were 5.22x10(-6) and 3.49x10(-6) M, respectively, indicating that the lysozyme was retained more stable under alkaline conditions, although the binding capacity in terms of micromole protein per gram sorbent remained essentially unchanged.  相似文献   

18.
Abstract

This review discusses the principles of immobilized metal ion affinity chromatography (IMAC) and its applications to protein separations. IMAC functions by binding the accessible electron-donating pendant groups of a protein - such as histidine, cysteine, and tryptophan - to a metal ion which is held by a chelating group covalently attached on a stationary support. A common chelating group is iminodiacetate. The ions commonly used are of borderline or soft metals, such as Cu2+, Ni2+, Co2+, and Zn2+. Protein retention in IMAC depends on the number and type of pendant groups which can interact with the metal. The interaction is affected by a variety of independent variables such as pH, temperature, solvent type, salt type, salt concentration, nature of immobilized metal and chelate, ligand density, and protein size. Proteins are usually eluted by a decreasing pH gradient or by an increasing gradient of a competitive agent, such as imidazole, in a buffer. There are still several unresolved issues in IMAC. The exact structures of protein-immobilized metal complexes need to be known so that retention behavior of proteins can be fully understood and sorbent structures can be optimized. Engineering parameters, such as adsorption/desorption rate constants, sorbent capacities, and intraparticle diffusivities, need to be developed for most protein systems. Engineering analysis and quantitative understanding are also needed so that IMAC can be used efficiently for large scale protein separations.  相似文献   

19.
The use of surface plasmon resonance (SPR), for the comparison of metal binding properties of polyhistidine tags, was evaluated. Six different tags containing various number of histidines, either none (tags n and t), three (tags H3A3 and HA2HA2H) or six (tags H6 and His6), were genetically fused to the N-terminal of lactate dehydrogenase (LDH). The binding ability of these constructs to nickel ions, immobilised with nitrilotriacetic acid (NTA), was tested both by conventional immobilised metal ion affinity chromatography (IMAC) and SPR. The relative binding strengths of the tags to nickel were identical using both methods (n approximately t < HA2HA2H < H3A3 < His6 < H6), confirming the value of the SPR technique for investigating metal-protein interactions. Protein modelling has also proved to be useful in supporting the experimental results.  相似文献   

20.
Peptides synthesized by the solid-phase method can be efficiently purified in a single immobilized metal affinity chromatography step based on interaction with the alpha-amino group if, after coupling of each amino acid residue, unreacted amino groups are irreversibly blocked by acetylation and if no strongly metal-binding amino acids (His, Trp, Cys) are present in the sequence. A difference in basicity for alpha- and epsilon-amino functions of ca. 2 pH units is sufficiently large to allow selective binding of peptides to immobilized metal ions via the unprotonated alpha-amino group. The binding is pH-dependent: on Cu(2+)- and Ni(2+)-loaded supports most peptides are maximally retarded at pH values around 7.5 and 8.5, respectively. The decreased binding strength at lower pH values is due to protonation of the alpha-amino function, whereas the reduced affinity at higher pH is caused by metal ion transfer from the matrix to the peptide. The metal ion is captured in a multidentate chelate where, in addition to the alpha-amino group, up to three adjacent deprotonated amide nitrogens are coordinated to the metal. If the pH is raised further, additional metal ions may be bound in biuret-like structures. Immobilized Ni2+, owing to its higher selectivity and affinity, is the preferred chromatographic support if slightly basic conditions can be tolerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号