首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bell and Zeno     
Bell's inequalities and related inequalities of Wigner, Clauser–Horne–Shimony–Holt, Accardi–Fedullo, Gudder–Zanghi, Herbert–Peres, Khrennikov, others, are shown to be contained within a general operator trigonometry developed by this author starting in 1967. These inequalities are improved here to useful quantum spin correlation identities. Secondly, the Zeno problems from quantum measurement theory are traced from early work by this author starting in 1974, to the present. A Zeno Alternative that stresses domain-theoretic properties as essential to distinguishing reversible from irreversible quantum evolutions is presented. PACS: 03.65.Ud, 03.65.Xp,02.30.Tb.  相似文献   

2.
In analogy with the fact that there are magnetic moments associated respectively with the electron's orbital and spin motion in an atom we present several analyses on a proposal to introduce a concept of intrinsic magnetic flux associated with the electron's orbital and spin motion. It would be interesting to test or to demonstrate Faraday's and Lenz's laws of electromagnetic induction arising directly from the flux change due to transition of states in an atom and to examine applications of this concept of intrinsic flux. PACS: 03.65.-w, 03.65.Ca, 03.65.Ta.  相似文献   

3.
The Duffin-Kemmer-Petiau (DKP) equation for spin 0 and 1 with smooth potential and position dependent- mass is solved. The solution is given in terms of the Heun function. The step case for potential and mass are deduced as a limiting case. The boundary conditions are also discussed. PACS Numbers:03.30.+p, 03.65.Pm, 03.65.Ge, 03.65.Db  相似文献   

4.
The supersymetric path integrals in solving the problem of relativistic spinning particle interacting with pseudoscalar potentials is examined. The relative propagator is presented by means of path integral, where the spin degrees of freedom are described by odd Grassmannian variables and the gauge invariant part of the effective action has a form similar to the standard pseudoclassical action given by Berezin and Marinov. After integrating over fermionic variables (Grassmannian variables), the problem is reduced to a nonrelativistic one with an effective supersymetric potential. Some explicit examples are considered, where we have extracted the energy spectrum of the electron and the wave functions. PACS numbers: 03.65. Ca-Formalism, 03.65. Db-Functional analytical methods, 03.65. Pm-Relativistic wave equations.  相似文献   

5.
In this paper we derive the propagator for the one-dimensional Dirac oscillator using the supersymmetric path integral formalism. The spin calculations are carried out with the help of the technique of Grassmann functional integration. The Green function is exactly evaluated. The Polyakov spin factor is explicitly derived and the energy spectrum and the corresponding wave functions are deduced. PACS 03.65.Ca; 03.65.Db; 03.65.Ge; 03.65.Pm  相似文献   

6.
The separation of variables of the spin- field equation is performed in detail in the Schwarzschild geometry by means of the Newman Penrose formalism. The separated angular equations coincide with those relative to the Robertson-Walker space-time. The separated radial equations, that are much more entangled, can be reduced to four ordinary differential equations, each in one only radial function. As a consequence of the particular nature of the spin coefficients it is shown, by induction, that the massive field equations can be separated for arbitrary spin. baselineskip=12 pt PACS 04.20.Cv- Fundamental problems and general formalism. PACS 03.65.Pm- Relativistic wave equations. PACS 02.30.Jr- Partial differential equations. PACS 04.20.Jb- Exact solutions.  相似文献   

7.
We propose a simple geometrical approach for finding robustness of entanglement for Bell decomposable states of two-qubit quantum systems. It is shown that for these states robustness is equal to the concurrence. We also present an analytical expression for two separable states that wipe out all entanglement of these states. Random robustness of these states is also obtained. We also obtain robustness of a class of states obtained from Bell decomposable states via some special local operations and classical communications (LOCC).Received: 28 October 2002, Published online: 5 August 2003PACS: 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.)  相似文献   

8.
By using the Lewis-Riesenfeld theory and algebraic method, we present an alternative approach to obtain the exact solution of time-dependent Hamiltonian systems involving quadratic, inverse quadratic and (1/x)p+p(1/x) terms. This solution is discussed and compared with that obtained by Choi, J. R. (2003). International Journal of Theoretical Physics 42, 853]. PACS: 03.65Ge; 03.65Fd; 03.65Bz  相似文献   

9.
We use the Lewis-Riesenfeld theory to determine the exact form of the wavefunctions of a two-dimensionnal harmonic oscillator with time-dependent mass and frequency in presence of the Aharonov-Bohm effect (AB). We find that the auxiliary equation is independent of the AB magnetic flux. In the particular case of quantized AB magnetic flux the wavefunctions coincide exactly with the wavefunctions of the 2D time-dependent harmonic oscillator. PACS: 03.65Ge; 03.65Fd; 03.65Bz  相似文献   

10.
The one-dimensional Klein-Gordon equation is solved for the PT-symmetric generalized Hulthén potential in the scalar coupling scheme. The relativistic bound-state energy spectrum and the corresponding wave functions are obtained by using the Nikiforov-Uvarov method which is based on solving the second-order linear differential equations by reduction to a generalized equation of hypergeometric type. PACS numbers: 03.65.Fd, 03.65.Ge  相似文献   

11.
Ordering ambiguity associated with the von Roos position dependent mass (PDM) Hamiltonian is considered. An affine locally scaled first order differential introduced, in Eq. (9), as a PDM-pseudo-momentum operator. Upon intertwining our Hamiltonian, which is the sum of the square of this operator and the potential function, with the von Roos d-dimensional PDM-Hamiltonian, we observed that the so-called von Roos ambiguity parameters are strictly determined, but not necessarily unique. Our new ambiguity parameters’ setting is subjected to Dutra’s and Almeida’s, Phys. Lett. A. 275 (2000) 25 reliability test and classified as good ordering. PACS numbers: 03.65.Ge, 03.65. Fd, 03.65.Ca  相似文献   

12.
A two spinor lagrangian formulation of field equations for massive particle of arbitrary spin is proposed in a curved space-time with torsion. The interaction between fields and torsion is expressed by generalizing the situation of the Dirac equation. The resulting field equations are different (except for the spin-1/2 case) from those obtained by promoting the covariant derivatives of the torsion free equations to include torsion. The non linearity of the equations, that is induced by torsion, can be interpreted as a self-interaction of the particle. The spin-1 and spin-3/2 cases are studied with some details by translating into tensor form. There result the Proca and Rarita-Schwinger field equations with torsion, respectively. PACS numbers: 03.65.Pm; 04.20.Cv; 04.20.Fy.  相似文献   

13.
The problem of a relativistic spinning particle interacting with a weak gravitational plane wave in (3+1) dimensions is formulated in the frame work of covariant supersymmetric path integrals. The relative Green function is expressed through a functional integral over bosonic trajectories that describe the external motion and fermionic variables that describe the spin degrees of freedom. The (3+1) dimensional problem is reduced to the (1+1) dimensional one by using an identity. Next, the relative propagator is exactly calculated and the wave functions are extracted. PACS 04.30.-w; 03.65.Ca; 03.65.Db; 03.65.Pm  相似文献   

14.
Given a constant of motion for the one-dimensional harmonic oscillator with linear dissipation in the velocity, the problem to get the Hamiltonian for this system is pointed out, and the quantization up to second order in the perturbation approach is used to determine the modification on the eigenvalues when dissipation is taken into consideration. This quantization is realized using the constant of motion instead of the Hamiltonian. PACS: 03.20.+i, 03.30.+p, 03.65.−w,03.65.Ca  相似文献   

15.
Bell's inequalities are always derived assuming that local hidden-variable theories give a set of positive-definite probabilities for detecting a particle with a given spin orientation. The usual claim is that quantum mechanics, by its very nature, cannot produce a set of such probabilities. We show that this is not the case if one allows for generalized (nonpositive-definite) master probability distributions. The master distributions give the usual quantum mechanical violation of Bell's inequalities. Consequences for the interpretation of quantum mechanics are discussed.  相似文献   

16.
A construction of relativistic wave equations on the homogeneous spaces of the Poincaré group is given for arbitrary spin chains. Parametrizations of the field functions and harmonic analysis on the homogeneous spaces are studied. It is shown that a direct product of Minkowski space time and two-dimensional complex sphere is the most suitable homogeneous space for the physical applications. The Lagrangian formalism and field equations on the Poincaré and Lorentz groups are considered. A boundary value problem for the relativistically invariant system is defined. General solutions of this problem are expressed via an expansion in hyperspherical functions defined on the complex two-sphere. PACS numbers: 02.30.Gp, 02.60.Lj, 03.65.Pm, 12.20.-m  相似文献   

17.
The Wigner's Theorem states that a bijective transformation of the set of all one-dimensional linear subspaces of a complex Hilbert space which preserves orthogonality is induced by either a unitary or an anti-unitary operator. There exist many Wigner-type theorems, in particular in indefinite metric spaces, von Neumanns algebras and Banach spaces and we try to find a common origin of all these results by using properties of the lattice subspaces of certain topological vector spaces. We prove a Wigner-type theorem for a pair of dual spaces which allows us to obtain, as particular cases, the usual Wigner's Theorem and some of its generalizations. PACS: 02.40.Dr, 03.65.Fd,03.65.Ta AMS Subject Classification (1991): 06C15, 46A20, 81P10.  相似文献   

18.
We obtain the exact bound states of the generalized of Hulthén potential with negative energy levels using an analytic approach. In order to obtain bound states, we use the associated Jacobi differential equation. Using the supersymmetry approach to quantum mechanics, we show that these bound states, via four pairs of first order differential operators, represent four types of ladder equations. Two types of these supersymmetric structures suggest derivation of algebric solutions for the bound states using two different approaches. PACS 21.60.Cs; 21.60.Fw; 21.60.-n; 03.65.Fd; 03.65.Ge; 03.65.-w  相似文献   

19.
We make use of natural induction to propose, following John Ju Sakurai, a generalization of Bell's inequality for two spin s=n/2(n=1,2,...) particle systems in a singlet state. We have found that for any finite integer or half-integer spin Bell's inequality is violated when the terms in the inequality are calculated from a quantum mechanical point of view. In the final expression for this inequality the two members therein are expressed in terms of a single parameter . Violation occurs for in some interval of the form (,/2) where parameter becomes closer and closer to /2, as the spin grows, that is, the greater the spin number the size of the interval in which violation occurs diminishes to zero. Bell's inequality is a relationship among observables that discriminates between Einstein's locality principle and the non-local point of view of orthodox quantum mechanics. So our conclusion may also be stated by saying that for large spin numbers the non-local and local points of view agree.  相似文献   

20.
Bell's theorem is expounded as an analysis in Bayesian inference. Assuming the result of a spin measurement on a particle is governed by a causal variable internal (hidden, local) to the particle, one learns about it by making a spin measurement; thence about the internal variable of a second particle correlated with the first; and from there predicts the probabilistic result of spin measurements on the second particle. Such predictions are violated by experiment: locality/causality fails. The statistical nature of the observations rules out signalling; acausal, superluminal, or otherwise. Quantum mechanics is irrelevant to this reasoning, although its correct predictions of experiment imply that it has a nonlocal/acausal interpretation. Cramer's newtransactional interpretation, which incorporates this feature by adapting the Wheeler-Feynman idea of advanced and retarded processes to the quantum laws, is advocated. It leads to an invaluable way of envisaging quantum processes. The usual paradoxes melt before this, and one, the delayed choice experiment, is chosen for detailed inspection. Nonlocality implies practical difficulties in influencing hidden variables, which provides a very plausible explanation for why they have not yet been found; from this standpoint, Bell's theoremreinforces arguments in favor of hidden variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号