首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
 激光束光路自动准直系统用于高功率激光装置光束精密准直。基于某激光原型装置总体对腔镜准直调整流程,针对高功率激光系统腔镜准直过程光斑图像,仿真处理并定量分析了光斑边缘特征;结合腔镜准直监测单元光传输分析,使用激光光斑边缘不同部分曲率的相似性和光斑圆形度实现了对腔镜调节的量化评估。在腔镜准直结束时圆形度指标为12.222;边缘相似度达到99.62%。  相似文献   

2.
为满足高功率激光装置光路自动准直系统的高精度要求,提出一种光束非垂直过孔状态下椭圆光斑的光斑差值快速调节法,并引入局部自适应阈值二值化算法提高准直图像的定位精度.当椭圆光斑长短轴差值较大时,利用基于最小二乘法的椭圆拟合改进算法,求出椭圆光斑长短轴的轴长,通过远场反射镜调节长短轴轴长差值以调节光斑形状,直到获得规则的圆形光斑.分析了圆光斑中心与基准位置的偏差值,将差值转为闭环控制的步进电机调整步数,实现了高功率激光装置光束的快速自准直.该算法应用在某高功率激光装置光路自动准直系统中,结果表明,远场指向精度优于0.033″,优于目前高功率激光准直系统准直效果,提高了激光光束的指向性精度.  相似文献   

3.
图像处理在光路自动准直系统中的应用   总被引:7,自引:0,他引:7  
光路自动准直系统应用于惯性约束聚变的高功率激光装置中的光束自动调整。图像处理是光路自动准直的关键技术之一。针对神光Ⅲ原型装置,结合阈值化、重心法、中值滤波和圆拟合等多种不同的图像处理方法设计了一套合理的准直方案,并且在模拟实验平台上进行了实验验证。实验结果表明,光路自动准直系统能够在15min之内顺利完成光路的自动调整,光束近场调整精度优于近场光斑的±0.5%,光束远场调整精度≤±0.3″,满足了原型装置的总体要求。  相似文献   

4.
 针对高功率激光装置对多程放大器腔镜准直的要求,利用小孔的像传递和光路自动准直的原理,设计出一套创新的腔镜准直调整方法,并且在SG-Ⅲ原型装置4程放大模拟实验平台上进行了实验验证。实验结果表明:自动准直系统能够在15min之内顺利完成主放大级系统的光路调整,光束近场调整精度值小于近场光斑直径的0.5%,光束远场调整精度小于0.3"。  相似文献   

5.
光路自动准直系统应用于惯性约束聚变的高功率激光装置中。针对神光Ⅱ第九路装置,设计了一套可行的准直方案,并在装置上进行了实验。实验结果表明,自动准直系统能够在15minSq顺利完成光路的自动调整,小口径近场调整准直精度小于±0.5mm,大口径近场调整准直精度小于±1.0mm,远场准直精度小于±1”,满足了装置的设计要求。  相似文献   

6.
为满足高功率激光装置全程光路自动准直快速性及高精度的要求,提出了一种光斑对应椭圆的长短轴差值法对光斑形状调节,并结合重心法快速、高精度的获取光斑图像中心位置.利用大律法、3×3邻域法及8向链码法对光斑图像进行处理,得到面积最大的光斑;分析最大光斑区域中心距,求出最大光斑对应椭圆的长短轴长,并根据长短轴差值调节光斑形状,至长短轴差值近似为零,获得形状最规则的光斑;分析形状最规则光斑的中心位置与其基准位置在x和y方向的偏差,并将该差值转为闭环控制的步进电机所需要调整的步数,实现激光光束的自准直.该算法应用在高功率激光装置中,结果表明,主放大光路的准直时间缩短为15min,近场准直的准确度优于0.2%,远场指向准确度优于1μrad,满足高功率激光光束的准直要求.  相似文献   

7.
光路自动准直快速调整数学模型研究   总被引:2,自引:2,他引:0  
达争尚  李东坚  周维  彭志涛 《光子学报》2008,37(12):2534-2538
推演了用于计算机快速调整的巨型激光器光路自动准直控制数学模型,分析了ICF准直光路的光学特性及光路调整特点,据此求解出了准直控制的输入偏差量和输出控制量之间的数学模型.该模型在某大型激光装置的光路自动准直中得以实际应用,八路主放大级1~2程光路的准直时间<3 min,3~4程光路的准直时间<8 min,主放大级输出光束近场准直准确度优于0.3%,远场指向的准确度优于0.3″ RMS(均方根准确度).  相似文献   

8.
高功率激光装置光束准直系统新型远场监测技术   总被引:1,自引:0,他引:1       下载免费PDF全文
利用高功率激光装置空间滤波器小孔成像和取样光栅的衍射,设计出一套新型光路远场监测方案,并且在实验平台上进行了实验验证.实验结果表明:相对传统的远场监测方法,该远场监测系统通过侧面离轴光栅取样灵活利用空间,其调整平均误差为空间滤波器小孔直径0.9%,能够满足准直系统远场调整精度(<小孔直径5%)的要求. 关键词: 激光技术 光束准直 光栅 远场  相似文献   

9.
为了提高超短脉冲激光的瞄准精度,基于自准直原理提出瞄准装置光学系统。以670 nm光纤耦合激光器为光源,设计指示光准直、扩束光学系统,准直光的不平行度达到3.2,设计焦距为350 mm,相对孔径1/5,离轴量50 mm的主激光离轴抛物面镜,其成像质量达到衍射极限,基于准直束光学系统和离轴抛物面镜,设计可适应670 nm和800 nm两种波长的20和100的瞄准和监测成像光学系统。提出一种小孔准直的安装调试方法,以指示光进行实验验证,结果表明:设计的光学系统成像光斑均匀,其物方分辨率达到4.1 m。  相似文献   

10.
展示了基于离轴八程激光放大器的闭环自动准直技术研究,该项技术旨在用自动准直系统取代手动光路准直的方式,明显提高了该构型复杂的多程激光放大器的运行效率、准直精度与其输出光束质量。该技术利用主激光照明和像传递系统实现离轴八程激光放大器中滤波器小孔空间位置的精确标定,通过边缘检测处理远场光斑得到其指向中心。基于光斑中心与基准间的差值,对特定反射镜架进行二维控制进行光束指向补正,从而实现离轴八程放大器系统的闭环自动准直。研究结果表明,实验结果契合离轴八程放大器系统对光束准直准确率与效率的要求,验证了该准直技术在离轴八程激光放大光路中应用的可行性。  相似文献   

11.
空间插值在功率谱密度计算中的应用   总被引:3,自引:2,他引:1       下载免费PDF全文
为了提高光学元件波前中频PSD计算的精度和有效频谱宽度,提出了填补波前无效数据的双线性插值法和抑制欠采样噪声的六采样点插值法。模拟计算和实验结果表明:双线性插值法有效地保证了填充数据与真实数据的一致性,抑制了零填充方法引入的虚假中高频信息,使得填补后的PSD与原始PSD较好地吻合;六采样点插值法有效地分离了信号和欠采样噪声,使得有效PSD频谱上限从1/2 Nyquist频率提高到Nyquist频率。  相似文献   

12.
超连续谱干涉方法测量古依相移   总被引:1,自引:0,他引:1  
王之光  曾志男  李儒新  徐至展 《光学学报》2007,27(10):1905-1908
利用两束超连续光干涉得到的信号,测量了透镜焦点附近飞秒激光脉冲的古依(Gouy)相移。根据得到的光谱干涉信号,利用傅里叶变换得到相对相位值。激光光束在聚焦透镜后的束腰半径可以由成像方法测得。根据测量得到的激光光束束腰半径,用非线性拟合的方法得到了古依相移曲线,拟合曲线与实验结果符合得非常好。给出了古依相位在焦点前后1 mm区域内的移动量。  相似文献   

13.
为实现高功率激光二极管堆栈光束的匀化与整形,提出基于双柱透镜慢轴准直的匀化系统。利用双柱透镜实现对高填充因子激光二极管慢轴方向光束发散角度的压缩,降低成像型多孔径光束积分器中微透镜的数值孔径,减小匀化系统体积。通过三个限定条件确定了双柱透镜参数取值范围,并通过像差分析对双柱透镜进行了优化,实现慢轴方向光束剩余发散角度1.74。结合成像型多孔径光束积分器,设计了激光二极管堆栈的匀化系统,并进行了实验测试。实验结果表明,在中心光斑尺寸约为6 mm6 mm范围内,光斑不均匀性为8.11%。  相似文献   

14.
光束指向稳定性是高能激光应用研究中的一项关键指标,光束指向稳定性的检测是高能激光系统性能实现的重要环节。以长焦距聚焦反射镜与高分辨率CCD(charge coupled device)为主要元件,构建高精度的光束指向检测装置。采用灰度重心法定位光斑中心,并以理想光斑与实测光斑为例进行验证,误差小于1个像元。利用CCD高频采样,统计单位时间内光斑中心位移,获得光束指向稳定性指标,检测实例精度可达1.25μrad。该方法简便易行,测量精度高,适用于各种波长的激光光束指向检测以及其他相关参数的测量。  相似文献   

15.
谭毅  耿超  李新阳  罗文  罗奇 《物理学报》2015,64(2):24216-024216
理论分析了激光瞄准系统中视轴误差与目标照明回光的关系. 介绍了同时具备激光束发射与瞄准偏差校正功能的自适应光学器件––自适应光纤准直器的原理. 搭建了光束经200 m水平大气传输的激光瞄准实验平台. 基于二维目标和三维目标的照明回光, 利用随机并行梯度下降算法分别实现了不同初始视轴误差下的瞄准闭环校正. 实验结果表明, 闭环后二维目标和三维目标的视轴校正残差评价参数分别小于6%和10.8%, 校正精度均在理论范围内. 最后, 分析了算法参数对动目标瞄准的影响.  相似文献   

16.
邓万涛  赵刚  张茂  陈翔 《中国光学》2020,(1):165-178
高能激光系统的主要工作方式是利用其精跟踪模块将发射激光传输聚焦至闭环跟踪条件下的目标上,使之受到毁伤或失效。为实现该工作方式,本文研究设计了一套共孔径光学收发装置。该装置的发射系统主要由离轴两反式主望远镜模块、伽利略透射式调焦望远镜模块和光束馈送模块共同组成二级扩束系统,接收系统主要由离轴两反式主望远镜模块、精跟踪成像模块和光束馈送模块共同组成长焦距光学系统,其中光束馈送模块由二向色镜、快速反射镜等光学元件组成。以非相干空间合束的基模高斯光作为激光光源,利用光学设计软件对该装置进行了优化设计。对于发射系统,获得了激光经过调焦望远镜模块不同的调焦量调制后,传输至0.5~5 km处的光斑分布情况,且激光波前像差RMS值均优于λ/20;对于接收系统,由各模块一同构成的成像光学系统的性能经优化后接近衍射极限,其中系统传递函数在70 lp/mm时大于0.6,最后通过样机实验也验证了设计的正确性。本文的设计和实验结果证实了该共孔径光学收发装置结构合理,性能可靠,满足高能激光系统的工程应用需求。  相似文献   

17.
李腾飞  钟哲强  张彬 《物理学报》2018,67(17):174206-174206
提出了利用光克尔效应实现激光束波前动态调控,进而实现焦斑超快束匀滑(ps量级)的方案,其原理是利用抽运光动态改变光克尔介质的折射率分布,以对透射主激光束附加时空耦合的动态波前,进而使激光束在靶面的焦斑散斑产生更加快速、多样的变化,最终实现焦斑的超快束匀滑.当抽运光时间波形为高斯脉冲序列,且以小角度倾斜入射至光克尔介质时,由于抽运光和光克尔介质对主激光附加随时间横向移动的周期性球面相位,且球面相位的幅值随时间不断变化,因而可以同步实现激光束焦面散斑的横向和径向超快速扫动,从而更为有效地改善靶面辐照均匀性.  相似文献   

18.
激光光斑漂移的检测   总被引:2,自引:3,他引:2       下载免费PDF全文
王春阳  李金石 《应用光学》2007,28(2):205-208
针对激光光斑漂移设计了一套光斑漂移检测系统。利用该系统实现了对He-Ne激光器出射光束漂移的检测。它采用CCD摄像头和图像采集卡采集激光器输出光斑,通过专门软件对数字图像进行处理,得出光斑漂移的大小;另外,利用几何光学方法得到了激光光束在X方向、Y方向以及空间立体角上的漂移大小。分析了引起光束漂移的原因。结果表明:He-Ne激光器出射光束的指向主要受温度、环境振动、空气扰动和激光器自身结构的影响。该系统能准确地测量出激光器出射光束的漂移大小,实现光束漂移的控制。  相似文献   

19.
梁佳新  向汝建  杜应磊  顾静良  吴晶 《强激光与粒子束》2020,32(8):081002-1-081002-8
利用波前传感器对光束进行净化的自适应光学系统是目前提高光束质量的常用技术,但在实际应用中,该技术需要波前传感器,系统复杂,体积庞大,同时需要较高性能信标源。为解决上述问题,提出了一种基于变形镜本征模式和远场光斑特征分析的无波前自适应光学系统,用于校正激光器输出的方形光束。将变形镜影响函数进行本征模式分解,并用远场光斑的均方半径作为评价函数,建立了畸变波前的模式系数与评价函数之间的关系,通过测量评价函数获得模式系数用于求解校正电压,实现波前共轭校正。仿真校正和实验验证结果表明,该方法可以有效实现静态像差校正,提高远场光斑的能量集中度。  相似文献   

20.
In a magnetically quantised two dimensional electron gas (2DEG) of finite dimension, the Landau levels bend up at the boundaries due to the confining potential. Edge channels are formed where these intersect the Fermi level. We have used laser imaging with a spatial resolution of 5 μm to investigate the edge channel structure in a gallium arsenide Hall bar at temperatures between 1.5 K and 150 mK. The beam from an Ar+ laser is focused to a small spot on the top surface of the device and the induced Hall photovoltage is measured as a function of the spot position. The size of the photovoltage depends on the potential profile in the device and, at integer Landau level filling factors, is a maximum at the edges. In our device the edge regions turn out to be very wide compared to the magnetic length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号