首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Glucose oxidase (GOD) was encapsulated in chitosan matrix and immobilized on a glassy carbon electrode, achieving direct electron transfer (DET) reaction between GOD and electrode without any nano‐material. On basis of such DET, a novel glucose biosensor was fabricated for direct bioelectrochemical sensing without any electron‐mediator. GOD incorporated in chitosan films gave a pair of stable, well‐defined, and quasireversible cyclic voltammetric peaks at about ?0.284 (Epa) and ?0.338 V (Epc) vs. Ag/AgCl electrode in phosphate buffers. And the peak is located at the potentials characteristic of FAD redox couples of the proteins. The electrochemical parameters, such as midpoint potential (E1/2) and apparent heterogeneous electron‐transfer rate constants (ks) were estimated to ?0.311 V and 1.79 s?1 by voltammetry, respectively. Experimental results indicate that the encapsulated GOD retains its catalytic activity for the oxidation of glucose. Such a GOD encapsulated chitosan based biosensor revealed a relatively rapid response time of less than 2 min, and a sufficient linear detection range for glucose concentration, from 0.60 to 2.80 mmol L?1 with a detection limit of 0.10 mmol L?1 and electrode sensitivity of 0.233 μA mmol?1. The relative standard deviation (RSD) is under 3.2% (n=7) for the determination of practical serum samples. The biologic compounds probably existed in the sample, such as ascorbic acid, uric acid, dopamine, and epinephrine, do not affect the determination of glucose. The proposed method is satisfactory to the determination of human serum samples compared with the routine hexokinase method. Both the unique electrical property and biocompatibility of chitosan enable the construction of a good bio‐sensing platform for achieved DET of GOD and developed the third‐generation glucose biosensors.  相似文献   

2.
A multilayer film composed of ferrocene(Fc)-appended poly(allylamine hydrochloride) (Fc-PAH) and poly(potassium vinylsulfate) (PVS) has been prepared on the surface of a gold(Au) electrode by using a layer-by-layer self-assembly technique. Fc-containing polyelectrolyte multilayer (PEM) film-modified electrodes can electrochemically catalyze the oxidation of ascorbic acid successfully. For a 2 (Fc-PAH/PVS) bilayer-covered electrode the catalytic current increased linearly with increasing concentration of ascorbic acid over the concentration range 6 mol L–1–3 mmol L–1. To extend the dynamic range for ascorbic acid, the surface of the Au electrode was first covered with a (PAH/PVS)2 film on which an additional (Fc-PAH/PVS)5 film was coated. This strategy successfully extended the dynamic range of the electrode up to 25 mmol L–1 ascorbic acid, because the (PAH/PVS)2 layer blocked access of ascorbic acid to the electrode surface. The upper detection limit of the (PAH/PVS)2 (Fc-PAH/PVS)5 film-modified electrode is much higher than those of Fc-based ascorbic acid sensors reported so far. Electron transfer is diffusion-controlled within the (PAH/PVS)2(Fc-PAH/PVS)5 film.  相似文献   

3.
4.
In this communication, an amperometric glucose biosensor based on MnO2/MWNTs electrode was reported. MnO2 was homogeneously coated on vertically aligned MWNTs by electrodeposition. The MnO2/MWNTs electrode displayed high electrocatalytic activity towards the oxidation of glucose in alkaline solution, showing about 0.30 V negative shift in peak potential with oxidation starting at ca. −0.20 V (vs. 3 M KCl–Ag/AgCl) as compared with bare MWNTs electrode. At an applied potential of +0.30 V, the MnO2/MWNTs electrode gives a linear dependence (R = 0.995) in the glucose concentration up to 28 mM with a sensitivity of 33.19 μA mM−1. Meanwhile, the MnO2/MWNTs electrode is also highly resistant toward poisoning by chloride ions. In addition, interference from the oxidation of common interfering species such as ascorbic acid, dopamine, and uric acid is effectively avoided. The MnO2/MWNTs electrode allows highly sensitive, low-potential, stable, and fast amperometric sensing of glucose, which is promising for the development of nonenzymatic glucose sensor.  相似文献   

5.
Summary The electrochemical characteristics were examined of band- and square-type MAEs (microarray electrodes) with 10, 20 and 30 m band width and side length prepared by using standard planar processing in K3Fe(CN)6 solution. Among them, S1–5 square-type MAE with 10 m side length and 9.0×10–3 mm2 in the total area exhibits the largest current density and the shortest response time. The H2O2 calibration curve obtained at the S1–5 shows linearity from 0.1 to 5.0 mmol/l, a mean slope of 550 nA/mmol/l with a CV (variation coefficient) of 16.1%. A glucose sensor based on the S1–5 was prepared and its sensitivity was 21 nA/mmol/l, ten-fold greater than that of a single ME (microelectrode) reported lately.  相似文献   

6.
Summary A differential pulse-polarographic method has been studied for the determination of vanadium employing the catalytic maximum wave. A well-defined differential pulse polarographic peak is observed in the potential range from –0.2 to –0.7 V vs. SCE for vanadium(V) in 10 mmol 1–1 NaCl containing 10 mmol 1–1 acetic acid, 40 mmol 1–1 pyrocatechol, and 2.5 mmol 1–1 KBrO3. The peak current is very large and proportional to the concentration of vanadium(V) between 1×10–7 and 1×10–6 mol 1–1. The relative standard deviation at 0.5 mol l–1 vanadium(V) was 2.06% (n=7). This method has been successfully applied to the determination of vanadium in standard materials such as pond sediment.
Spurenbestimmung von Vanadium mit Hilfe der katalytischen Maximumsstufe in der Differential-Puls-Polarographie
Zusammenfassung Ein gut definierter differentialpuls-polarographischer Peak wurde für Vanadium(V) in 10 mmol/l NaCl-Lösung, die 10 mmol/l Essigsäure, 40 mmol/l Brenzcatechin und 2,5 mmol/l KBrO3 enthielt, beobachtet (Potentialbereich –0,2 bis –0,7 V gegen SCE). Der Peakstrom ist sehr groß und die Vanadiumkonzentration im Bereich von 1×10–7 bis 1×10–6 mol/l proportional. Die relative Standardabweichung betrug 2,06% (n=7) bei 0,5 mol/l Vanadium(V). Das Verfahren wurde mit gutem Erfolg zur Vanadiumbestimmung in Standardproben (z.B. Teichsediment) eingesetzt.
  相似文献   

7.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

8.
The use of a gold film in-channel detector combined with a poly(methyl methacrylate) (PMMA) CE microchip has been tested for alkaline phosphatase (AP) enzymatic assays. Tris-borate or Tris-Gly (pH 9.0, 50 mmol L–1) buffer solutions were appropriate as running buffer. Signals for three common AP products: -naphthol, p-nitrophenol, and ascorbic acid, were obtained. They were reproducible (RSD 4.4% for six successive electropherograms corresponding to 5 mmol L–1 -naphthol solution) and the response was dependent on concentration (linear relationship for ascorbic acid solutions between 5 and 20 mmol L–1 concentration). Use of an end-channel gold film electrode was also investigated. If one of the reagents (substrate or enzyme) is included in the running buffer, two different types of enzymatic assay are feasible in less than 3 min.  相似文献   

9.
用循环伏安法在石墨电极上制得纳米纤维聚苯胺, 并在其上固定葡萄糖氧化酶(GOD)和辣根过氧化物酶(HRP)制备葡萄糖双酶传感器. 用交流阻抗、SEM等技术对其进行表征; 考察了各种因素对双酶电极响应电流的影响以及双酶电极的稳定性. 该传感器对葡萄糖响应电流的测定在0.05 V(vs SCE)下进行, 有效避免了电活性物质的影响, 线性响应范围为0.05-2.0 mmol·L-1.  相似文献   

10.
A simple method is presented for the simultaneous differential pulse voltammetric determination of uric acid, xanthine and hypoxanthine. It is based on the improved current responses of the three analytes at carbon paste electrodes polarized in a dilute alkaline medium (0.002 mol/l NaOH, 0.1 mol/l NaClO4) at 1.3 V vs. SCE for a short time. Compared with the methods reported in the literature, this procedure has a much wider linear range (2 to 3 orders of magnitude in concentration), lower detection limits (5 to 10 g l–1) and less interference by ascorbic acid. The electrochemical responses were found to be dependent on the pre-anodization potential and the time imposed on the electrodes as well as on the alkalinity of the supporting electrolyte. The proposed procedure was used to determine uric acid, xanthine and hypoxanthine in human urine without any preliminary treatment.  相似文献   

11.
A planar platinum electrode was covered by a photopolymer membrane containing glucose oxidase (GOD) to construct an amperometric glucose sensor. The application of a photopolymer system in membrane formation gives the opportunity to manufacture cheap biosensors with good reproducibility by means of automated techniques and to miniaturise sensors using photolithography. The electrodes were pretreated mechanically and chemically resulting in a half-wave potential (E1/2) of the H2O2 oxidation shifted towards more negative potentials. This shift allows the determination of glucose at a low working potential (300 mV vs. SCE) without addition of mediators. The important advantage of such applied potential decreasing lies in minimising the interference of oxidisable substances such as uric acid, bilirubin and paracetamol. The selectivity to ascorbic acid could also be proved without the application of additional protection layers. The glucose sensor developed has a high life-time, selectivity and sensitivity and a linear working concentration range from 0.05 up to 10 mmol/l of glucose. The sensor was used for the glucose determination in human serum samples with a very good correlation to a common photometric reference method. Received: 13 July 1996 / Revised: 11 September 1996 / Accepted: 14 September 1996  相似文献   

12.
A simple technique is described for constructing a glucose sensor by the entrapment of glucose oxidase (GOD) in a polyaniline (PA), poly(o‐toluidine) (POT) and their copolymer poly(aniline‐co‐o‐toluidine) (PA‐co‐POT) thin films, which were electrochemically deposited on a platinum plate in phosphate and acetate buffer. The maximum current response was observed for PA, POT, and PA‐co‐POT GOD electrodes at pH 5.5 and potential 0.60 V (v. Ag/AgCl). The phosphate buffer gives fast response as compared to acetate buffer in amperometric measurements. PA GOD electrode shows the fastest response followed by PA‐co‐POT and POT GOD electrodes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
In-vitro on-line glucose monitoring is described, based on microdialysis sampling and amperometric detection operated in a flow-injection system. Samples were injected into a two-electrode microcell containing an Ag/AgCl quasi-reference electrode and a glucose enzyme electrode as the working electrode, operated at + 0.15 Vvs. Ag/AgCl. The enzyme electrode is constructed by mixing the wired glucose oxidase into carbon paste. {Poly[1-vinylimidazole osmium(4,4-dimethylbipyridine)2Cl)]}+/2+ was used to wire the enzyme. The non-coated electrodes, cross-linked with poly(ethylene glycol) diglycidyl ether, responded linearly to glucose concentrations up to 60 mM, and were characterized by a sensitivity of 0.23 A mM–1 cm–2, when operated in flow injection mode and of 5.4 AmM –1 cm–2 in steady-state conditions. This sensitivity of the resulting enzyme electrode was 50% lower than that of similarly prepared but non-cross-linked electrodes. However, the cross-linked electrodes showed superior operational and storage stabilities, which were further improved by coating the electrodes with a negatively charged Eastman AQ film. An in-house designed microdialysis probe, equipped with a polysulphone cylindrical dialysis membrane, yielded a relative recovery of 50–60% at a perfusion rate of 2.5 l/min–1 in a well stirred glucose solution. The on-line set up effectively rejected common interferences such as ascorbic acid and 4-acetaminophen when present at their physiological concentrations.  相似文献   

14.
A novel type of united glucose oxidase (GOD) electrode was designed. Glucose oxidase and ferrocene (Fc), which was a mediator, were added into the composite electrode that was constructed by graphite powder, acetylene black, and epoxy resin. These three materials in composite electrode kept constant proportion in weight. And the optimum amounts of GOD and Fc among united enzyme electrode were 5% and 2%, respectively. The glucose was detected linearly in the concentration range 0.01–9.0 mM with a 20-s steady-state response time and 36 nA/mM of the sensitivity at 0.15 V applied potential. And electrode fouling problem and the response current from the interferents were avoided. The response current of the united GOD electrode had no obvious deterioration within 80 days when stored at 4°C in a refrigerator. The detecting results of human serum by the united GOD electrode had good consistency with that by standard enzyme method. The maximum deviation between these two detecting values was 5%. It might be used for detecting the blood sugar in clinical assay.  相似文献   

15.
An amperometric glucose biosensor is developed that is based on immobilization of glucose oxidase (GOD) in a composite film of poly(o-aminophenol) (POAP) and carbon nanotubes (CNT), which are electrochemically co-polymerized at a gold (Au) electrode. Because of the high surface per volume ratio and excellent electrical conductivity of CNT, the biosensor based on an Au/POAP/CNT/GOD electrode has lower detection limit (0.01 mM), larger maximum response current (0.24 mA cm(-2)) and higher sensitivity (11.4 mA M(-1) cm(-2)) than the values of the biosensor based on an Au/POAP/GOD electrode. Additionally, the biosensor shows fast response time, large response current, and good anti-interferent ability for ascorbic acid, uric acid and acetaminophen. Good reproducibility and stability of the biosensor are also observed.  相似文献   

16.
    
Zusammenfassung Auf der Basis einer NAD(P)+-unabhängigen Alkoholdehydrogenase aus Pseudomonas putida wurde eine Alkoholelektrode hergestellt, mit der primäre aliphatische Alkohole (vorzugsweise C6–C10) quantitativ nachgewiesen werden können. Der nach Zugabe von Phenazinmethosulfat nachzuweisende Sauerstoffverbrauch ist der Alkoholkonzentration im Bereich zwischen 20–400 mol/l proportional. Der Zeitbedarf für eine Messung liegt bei 1–2 min (initiale Reaktionsgeschwindigkeit) bzw. bei 10–15 min (Sauerstoffverbrauch im steady state-Zustand). Die Meßwertanzeige der Elektrode bleibt über einen Zeitraum von 60 Tagen (ca. 100 Bestimmungen) annähernd konstant.
Amperometric determination of alcohols (C6–C10) with an immobilized NAD(P)+-independent alcohol-dehydrogenase enzyme electrode
Summary The construction and performance of an enzyme electrode is described wich specifically detects primary aliphatic alcohols [especially (C6–C10)] in aqueous solutions. The electrode consists of a commercial Clark-type oxygen electrode on wich NAD(P)+-independent alcoholdehydrogenase was immobilized. In the presence of phenazinemethosulfate the decrease in electrode current is linearly proportional to the alcohol concentration between 20 and 400 mol/l. The response time is between 1–2 min (initial rate method) or 10–15 min (steady state method). The response of the electrode remains almost constant during 100 assays over a period of 60 days.
  相似文献   

17.
A novel reagentless amperometric uric acid biosensor based on functionalized multi-wall carbon nanotubes (MWCNTs) with tin oxide (SnO2) nanoparticles has been developed. This was successfully applied to assay uric acid levels from an in vivo microdialysis sampling. Compared with unfunctionalized or traditional carboxylic acid (–COOH)-functionalized MWCNTs, the MWCNTs–SnO2 electrode exhibited higher electrocatalytic oxidation to uric acid. Here, MWCNTs–SnO2 may act as an efficient promoter, and the system exhibited a linear dependence on the uric acid concentration over the range from 1.0 × 10–7 to 5.0 × 10–4 mol L–1. In addition, there was little ascorbic acid interference. The high sensitivity of the MWCNTs–SnO2 modified enzyme electrode enabled the monitoring of trace levels of uric acid in dialysate samples in rat striatum.  相似文献   

18.
A solid Fe2O3 based carbon-epoxy composite electrode was investigated for use as a potentiometric pH sensor. The electrode was constructed using a mixture of sulfated iron(III) oxide, carbon power, and epoxy resin, which was deposited directly onto a glass tube. The effect of composition (Fe2O3, carbon and epoxy resin) on the electrode response and its calibration curve (mV/pH) were investigated. The analytical behavior of the electrode in acid–base titrations was compared with that of a glass electrode. A linear response from pH 1.7 to 12.2 with a slope of –39.7 ± 0.6 mV/pH (at 25°C) was observed.  相似文献   

19.
Fullerene was immobilized on the surface of a glassy carbon electrode and reduced by an electrochemical method to form a partially reduced fullerene film. The films on the electrode showed stable electrocatalytic activity towards the oxidation of nitric oxide (NO). The catalytic current was proportional to the concentration of nitric oxide. Based on this property, a method for the detection of nitric oxide in aqueous solution is proposed. The detection conditions, such as supporting electrolyte, scan rate and thickness of the film were optimized. Under the optimized conditions, the catalytic currents increase linearly with the concentration of NO in the range of 3×10–71.0×10–4M, and the detection limit is 7.4×10–8M. In addition, the modified electrode is very selective with respect to interferences including ascorbic acid, dopamine, and nitrite when further modified by a Nafion film on the surface of the electrode. The experimental results indicate that the partially reduced fullerene can act as an NO sensor featuring fast response and high stability.  相似文献   

20.
Summary A differential pulse polarographic method for the determination of iron employing the catalytic maximum wave has been studied. A well-defined differential pulse polarographic peak for iron(III) in Britton-Robinson buffer solution containing 50 mol/l N-(2-hydroxyethyl) ethylenediamine N,N,N-triacetic acid (HEDTA) and 5 mmol/l KBrO3 is observed in the potential range from +0.2 to –0.3 V vs. SCE. The peak current is very large compared to that of the Fe(III)/EDTA complex, being proportional to the concentration of iron(III) between 1.00×10–8 and 3.58×10–6 mol/l under optimum conditions. The relative standard deviations for 3.58×10–7 mol/l and 1.79×10–6 mol/l iron(III) were 1.38 and 0.54%, respectively (n=5), and the calculated detection limit was 5.2×10–9 mol/l iron(III). The method has been applied to the determination of iron in fresh snow and rain waters.
Spurenbestimmung von Eisen mit Hilfe der katalytischen Maximumsstufe in der Differential-Puls-Polarographie
Zusammenfassung Das Verfahren beruht auf der Tatsache, daß in Britton-Robinson-Puffer (mit 50 mol/l HEDTA und 5 mmol/l KBrO3) im Potentialbereich von +0,2 bis –0,3 V gegen SKE ein gut definierter puls-polarographischer Peak für Eisen(III) auftritt. Der Peakstrom ist im Vergleich zu dem des Fe(III)/EDTA-Komplexes sehr groß und ist unter optimalen Bedingungen im Konzentrationsbereich von 1,00·10–8 bis 3,58·10–6 mol/l der Eisen(III)-Konzentration proportional. Die relative Standardabweichung beträgt 1,38% bzw. 0,54% (n=5) für 3,58·10–7 mol/l bzw. 1,79·10–6 mol/l Fe(III). Die berechnete Nachweisgrenze liegt bei 5,2·10–9 mol/l Fe(III). Das Verfahren wurde zur Eisenbestimmung in Schnee- und Regenwasser eingesetzt.


This work was supported in part by a Grant-in-Aid for Scientific Research from Hokkaido-prefecture, 1982.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号