首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optical absorption in MnIn2S4 single crystals has been studied. Direct and indirect optical transitions are found to occur at photon energies of 1.90?C2.16 eV in the temperature range of 80?C342 K. The temperature dependence of the band gap is determined; its temperature coefficients E gd and E gi are found to be ?4.84 × 10?4 and ?6.33 × 10?4 eV/K, respectively. The electron-phonon interaction is the main mechanism of the temperature shift of the intrinsic-absorption edge. MnIn2S4 single crystals exhibit anisotropy in polarized light at the absorption edge in the temperature range of 90?C190 K; the nature of this anisotropy is explained.  相似文献   

2.
The CASTEP module of the Materials Studio package was used for calculations of the structural, electronic and optical properties of pure and Cr3+-doped YAl3(BO3)4 (YAB). The exchange-correlation effects were treated within the generalized gradient approximation with the Perdew–Burke–Ernzerhof functional. The Monkhorst–Pack scheme k-points grid sampling was set at 3?×?3?×?4 for the Brillouin zone. The plane-wave basis set energy cutoff was set at 340?eV; ultrasoft pseudopotentials were used for all chemical elements. The convergence parameters were as follows: total energy tolerance 1?×?10?5?eV/atom, maximum force tolerance 0.03?eV/nm, maximal stress component 0.05?GPa and maximal displacement 0.001?Å. The principal absorption peaks of the studied crystal were identified. The influence of 532?nm?cw, 300?mW laser radiation on the observed absorptions was studied.  相似文献   

3.
The pressure shift of the optical absorption edge (dEg/dp = (1.1 ± 0.1) × 10?6 eV bar?1) and the compressibility (κ = (1.3 ± 0.) × 10?6 bar?1) of single crystalline CdCr2Se4 have been measured at ambient temperature. These data suggest an interpretation of the fundamental absorption in terms of either pp interband or p → localized d charge transfer transitions, but exclude excitations involving s-band states.  相似文献   

4.
The three capacitance methods, i.e., TSCAP, PHCAP, and transient capacitance measurements, are applied to determine electronic properties of deep levels inn-GaAs. In the boat-grown wafer detected are the 0.30 eV electron trap withN T =3.6×1016 cm?3 andS n =2.4×10?15 cm2, and the 0.75 eV electron trap withN T =2.0×1016 cm?3 andS n =1.2×10?14 cm2. In the epitaxial wafer, the 0.45 eV hole trap is detected withN T >1.5×1013 cm?3 andS p =1.4×10?14 cm2 as well as the 0.75 eV electron trap withN T =2.4×1013 cm?3.  相似文献   

5.
The effect of pressure on the optical absorption edge of mixed crystals Cd1-xMnxTe with different manganese concentrations is reported. The observed absorption edge shifts to higher energy with increasing pressure at a rate of α=7?8×10?3 eV/kbar and a second order coefficient of β=-4×10?5 eV/kbar2 for x<0.5, to lower energy with increasing pressure at a rate of α=-5.0 ×10?3 eV/kbar for x?0.5. A phase transition occurs for all the samples studied. The absorption edge of the new phase is outside the wavenumber range of the instrument. The physical origins of different pressure coefficients are discussed in the light of the deformation potentials of energy band states and the hybridization of the Mn2+ 3d levels with the p-like states in the valence band.  相似文献   

6.
The ionic and electronic conductivities of the lithium nitride bromides Li6NBr3 and Li1 3N4Br have been studied in the temperature range from 50 to 220°C and 120 to 450°C, respectively. Both compounds are practically pure lithium ion conductors with negligible electronic contribution. Li6NBr3 has an ionic conductivity Ω of 2 × 10-6Ω-1cm-1 at 100°C and an activation enthalpy for σT of 0.46 eV. Li1 3N4Br shows a phase transition at about 230°C. The activation enthalpy for σT is 0.73 eV below and 0.47 eV above this temperature. The conductivities at 150 and 300°C were found to be 3.5 × 10-6 Ω-1cm-1 and 1.4 × 10-3Ω-1cm-1, respectively. The crystal structure is hexagonal at room temperature with a = 7.415 (1)A? and c = 3.865 (1)A?.  相似文献   

7.
The results of the investigation of dark-current relaxation in EuGa2S4 single crystals are reported. The depth and concentration of the traps are found to be Et = 0.79 eV and Nt = 1.64 × 1014 cm?3, respectively.The charge accumulation region (dc = 3.3 × 10?5 cm) and contact capacitance (Cc = 1.23 × 10?10 F) are also estimated.  相似文献   

8.
Transparent polycarbonate samples were implanted with 1 MeV Ag+ ions to various doses ranging from 5 × 1014 to 3 × 1016 ions cm?2 with a beam current density of 900 nA cm?2. Modification in the structure of polycarbonate as a function of the implantation fluence was investigated using micro-Raman spectroscopy, glancing angle X-ray diffraction, and UV-Vis spectroscopy. Raman spectroscopy pointed toward the formation of graphite structures/clusters due to the ion implantation. UV-Vis absorption analysis suggests the formation of a carbonaceous layer and a drastic decrease in optical band gap from 4.12 eV to 0.50 eV at an implanted dose of 3 × 1016 ions cm?2. The correlation between the decrease in band gap and the structural changes is discussed.  相似文献   

9.
A Nd3+:Na2La4(WO4)7 crystal with dimensions of ? 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10?5 K?1 along c-axis and 1.23 × 10?5 K?1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd–Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10?20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10?20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10?20 cm2 for σ-polarization and 2.67 × 10?20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.  相似文献   

10.
In the case of NaClO3 and KClO3 crystals, analysis of the long wavelength tail of their fundamental absorption revealed the active participation of the internal vibrations of the chlorate ion (Part I). In order to test the validity of the above interpretation the absorption spectra of two more halates with different anions namely sodium bromate and sodium iodate are analysed in a manner similar to that given in Part I. It is found that the principle internal vibrations of bromate and iodate ions are involved in the indirect transitions. The variation of indirect band gap with temperature is found to be ?2·5 × 10?4 eV/K and ?2·9 × 10?4 eV/K for sodium bromate and sodium iodate respectively.  相似文献   

11.
Cu2CdSnS4 (CCdTS) thin films were synthesized using chemical spray pyrolysis deposition technique. The effect of various deposition times (20, 40, 60 min) on growth of these films was investigated. The as-synthesized Cu2CdSnS4 thin films were characterized by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, Raman spectroscopy and Hall Effect measurements. The XRD pattern of Cu2CdSnS4 structured in stannite phase with preferential orientations along (112) planes. Raman spectrum revealed very strong peak at about 333 cm?1. The films have the direct optical band gaps of 1.39–1.5 eV. The optimum hole mobility was found to be 3.212 × 101 cm2 v?1 s?1 for the film deposited on 60 min. The electronic structure and optical properties of the stannite structure Cu2CdSnS4 were obtained by ab initio calculations using the Korringa–Kohn–Rostoker method combined with the Coherent Potential Approximation (CPA), as well as CPA confirms our results.  相似文献   

12.
The optical spectra and the second-harmonic generation (SHG) are studied in a noncentrosymmetric GdFe3(BO3)4 magnet. In the region of weak absorption (α~20–400 cm?1) below ~3 eV, three absorption bands are distinguished, which can be unambiguously assigned to forbidden electronic transitions from the ground 6A1 state of the Fe3+ ion to its excited states 4T1(~1.4 eV), 4T2(~2 eV), and 4A1, 4E(~2.8 eV). Intense absorption begins in the region above 3 eV (α~2–4×105 cm?1), where two bands at ~4.0 and 4.8 eV are observed, which are caused by allowed electric dipole charge-transfer transitions. The spectral features of SHG in the 1.2–3.0-eV region are explained by a change in the SHG efficiency caused by a change in the phase mismatch. It is shown that in the weak absorption region, phase matching can be achieved for SHG.  相似文献   

13.
A novel potentially useful second harmonic generation (SHG) organometallic nonlinear optical (NLO) crystal: cadmium mercury thiocyanate bis(N-methylformamide), CdHg(SCN)4(C2H5NO)2 (CMTN), has been prepared, and large high-optical-quality single crystals with dimensions up to 30 ×27×9 mm3 have been grown by the temperature-lowering method. Its structural, physicochemical and optical properties are characterized by elemental analyses, X-ray powder diffraction, Fourier transform infrared and Raman spectroscopy, thermal analysis, powder SHG measurements and UV/Vis/NIR transmission. The specific heat has been determined to be 515.5 J?mol?1?K?1 at 300 K. CMTN possesses good physicochemical stability up to 128.5°C, exhibits powder SHG efficiencies 0.8 times that of urea and its UV transparency cutoff is 358 nm. By the use of the DFT/B3LYP/6-31G(d) method, the microscopic second order NLO behavior of CMTN has been investigated by computing the first-order hyperpolarizability together with that of CdHg(SCN)4 (CMTC) and CdHg(SCN)4(C3H8O2) (CMTG) crystals. The results have been explained based on their crystal structures.  相似文献   

14.
In this work, the authors have grown good-quality single crystals of l-ornithine monohydrochloride (LOHCL), an organic nonlinear optical material, in the aqueous solution by the slow cooling technique. N5+ ion irradiation of three different doses (i.e. 1?×?1016, 5?×?1016 and 1?×?1017?ions/cm2) at room temperature was done on the cut and polished crystal specimen of appropriate size from the grown crystal. A detailed study of FT-Raman spectroscopic was carried out to see the effect of irradiation on structure and vibrational modes of the LOHCL crystal. The results revealed that there is no structural modification even at high doses except the variation in peak intensity, which indicates that the grown crystals of LOHCL have good stability and also confirms that the nitrogen ions do not substitute into the crystal lattice. The UV–Vis–near-infrared spectroscopic study was done on all the samples to see the effect of irradiation and various optical parameters such as transmittance (~50–70%), absorption coefficient, energy band gap (~4.75–4.96?eV), extinction coefficient, refractive index (~1.31–1.24), optical permittivity (~1.7–1.6) and susceptibility (~0.7–0.6). The calculated optical parameters were found to vary with change in doses.  相似文献   

15.
The optical absorption of CdInGaS4 single crystals has been measured over a hydrostatic pressure range up to 40 kbar in the 2.0–3.0 eV photon energy range at room temperature. The interband gap for the indirect allowed transition was found to have a pressure coefficient, dEg/dP, of +6.4 × 10-6ev/bar.  相似文献   

16.
Absorption measurements of single Zn3As2 crystals were made at temperatures 5, 80 and 300 K. Free-carrier absorption is interpreted in the simple classical model. Interband absorption shows contributions from Urbach-like excitations. The direct optical gap has been estimated as 0.99 eV at 300 K, 1.09 eV at 80 K and 1.11 eV at 5 K. The linear dependence of band-gap on temperature was found in the range 80–300 K with dEg/dT = ? 4.55 × 10?4eVK?1.  相似文献   

17.
Optical feedback cavity-enhanced absorption spectroscopy (OF CEAS) has been demonstrated with a thermoelectrically cooled continuous wave distributed feedback quantum cascade laser (QCL) operating at wavelengths around 7.84 μm. The QCL is coupled to an optical cavity which creates an absorption pathlength greater than 1000 m. The experimental design allows optical feedback of infra-red light, resonant within the cavity, to the QCL, which initiates self-locking at each TEM00 cavity mode frequency excited. The QCL linewidth is narrowed to below the mode linewidth, greatly increasing the efficiency of injection of light into the cavity. At the frequency of each longitudinal cavity mode, the absorption coefficient of an intracavity sample is obtained from the transmission at the mode maximum, measured with a thermoelectrically cooled detector: spectral line profiles of CH4 and N2O in ambient air were recorded simultaneously and with a resolution of 0.01386 cm?1. A minimum detectable absorption coefficient of 5.5×10?8 cm?1 was demonstrated after an averaging time of 1 s for this completely thermoelectrically cooled system. The bandwidth-normalised limit for a single cavity mode is 5.6×10?9 cm?1?Hz?1/2 (1σ).  相似文献   

18.
We present the results of a surface microstructure and morphology study of thin films produced from volatile fluorine-containing rare-earth β-diketonate complexes and their adducts. Films 0.2–0.4 μm in thickness were synthesized in vacuum by means of thermal deposition of the parent substances at a pressure of 5 × 10?4?1 × 10?3 Pa and a deposition rate of 3 × 10?3 μm s?1 (for NaNd(FOD)4 films, the deposition rate was 8 × 10?2 μm s?1). The microstructure of films depends on the deposition conditions. The films of [NaNd(PTFA)4] and [NaNd(FOD)4] complexes and Ln(PTFA)3 · S1 adducts have an amorphous structure. The [NaNd(PTFA)4(Phen)] and Nd(PTFA)3 · S2 films are characterized by a more ordered polycrystalline structure with the grain size ranging from 0.2 to 1.5 μm.  相似文献   

19.
Cu2ZnSn(SxS1?x)4 (CZTSSe) thin films were prepared by annealing a stacked precursor prepared on Mo coated glass substrates by the sputtering technique. The stacked precursor thin films were prepared from Cu, SnS2, and ZnS targets at room temperature with stacking orders of Cu/SnS2/ZnS. The stacked precursor thin films were annealed using a tubular two zone furnace system under a mixed N2 (95%) + H2S (5%) + Se vaporization atmosphere at 580 °C for 2 h. The effects of different Se vaporization temperature from 250 °C to 500 °C on the structural, morphological, chemical, and optical properties of the CZTSSe thin films were investigated. X-ray diffraction patterns, Raman spectroscopy, and X-ray photoelectron spectroscopy results showed that the annealed thin films had a single kesterite crystal structure without a secondary phase. The 2θ angle position for the peaks from the (112) plane in the annealed thin films decreased with increasing Se vaporization temperature. Energy dispersive X-ray results showed that the presence of Se in annealed thin films increased from 0 at% to 42.7 at% with increasing Se vaporization temperatures. UV–VIS spectroscopy results showed that the absorption coefficient of all the annealed thin films was over 104 cm?1 and that the optical band gap energy decreased from 1.5 eV to 1.05 eV with increasing Se vaporization temperature.  相似文献   

20.
The third-order optical nonlinearity of deep-ultraviolet (DUV) nonlinear optical (NLO) crystal KBe2BO3F2 (KBBF) was investigated using single-beam Z-scan technique for the first time. The Z-scans were performed on a c-cut KBBF crystal and a KBBF prism-coupling device (PCD) with picosecond pulses at 355?nm. No two-photon absorption was observed in the experiment. The measured nonlinear refraction index n 2 showed positive signs, indicating self-focusing Kerr effects. The n 2 values were estimated to be (1.75±0.35)×10?15?cm2/W with the c-cut sample and (1.85±0.37)×10?15?cm2/W with the PCD, corresponding to the third-order nonlinear optical susceptibilities $\chi_{\mathrm{eff}}^{(3)}$ of (0.99±0.20)×10?13?esu and (0.94±0.19)×10?13?esu, respectively. The results are expected to promote the investigation of frequency conversion processes with ultra-short laser in KBBF crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号