首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Selecting relevant features to make a decision and expressing the relationships between these features is not a simple task. The decision maker must precisely define the alternatives and criteria which are more important for the decision making process. The Analytic Hierarchy Process (AHP) uses hierarchical structures to facilitate this process. The comparison is realized using pairwise matrices, which are filled in according to the decision maker judgments. Subsequently, matrix consistency is tested and priorities are obtained by calculating the matrix principal eigenvector. Given an incomplete pairwise matrix, two procedures must be performed: first, it must be completed with suitable values for the missing entries and, second, the matrix must be improved until a satisfactory level of consistency is reached. Several methods are used to fill in missing entries for incomplete pairwise matrices with correct comparison values. Additionally, once pairwise matrices are complete and if comparison judgments between pairs are not consistent, some methods must be used to improve the matrix consistency and, therefore, to obtain coherent results. In this paper a model based on the Multi-Layer Perceptron (MLP) neural network is presented. Given an AHP pairwise matrix, this model is capable of completing missing values and improving the matrix consistency at the same time.  相似文献   

2.
This paper investigates the effects of intransitive judgments on the consistency of pairwise comparison matrices. Statistical evidence regarding the occurrence of intransitive judgements in pairwise matrices of acceptable consistency is gathered by using a Monte-Carlo simulation, which confirms that relatively high percentage of comparison matrices, satisfying Saaty’s CR criterion are ordinally inconsistent. It is also shown that ordinal inconsistency does not necessarily decrease in the group aggregation process, in contrast with cardinal inconsistency. A heuristic algorithm is proposed to improve ordinal consistency by identifying and eliminating intransitivities in pairwise comparison matrices. The proposed algorithm generates near-optimal solutions and outperforms other tested approaches with respect to computation time.  相似文献   

3.
Recently, some researches have been carried out in the context of using data envelopment analysis (DEA) models to generate local weights of alternatives from pairwise comparison matrices used in the analytic hierarchy process (AHP). One of these models is the DEAHP. The main drawback of the DEAHP is that it generates counter-intuitive priority vectors for inconsistent pairwise comparison matrices. To overcome the drawbacks of the DEAHP, this paper proposes a new procedure entitled Revised DEAHP, and it will be shown that this procedure generates logical weights that are consistent with the decision maker's judgements and is sensitive to changes in data of the pairwise comparison matrices. Through a numerical example, it will be shown that the Revised DEAHP not only produces correct weights for inconsistent matrices but also does not suffer from rank reversal when an irrelevant alternative is added or removed.  相似文献   

4.
The DEAHP method for weight deviation and aggregation in the analytic hierarchy process (AHP) has been found flawed and sometimes produces counterintuitive priority vectors for inconsistent pairwise comparison matrices, which makes its application very restrictive. This paper proposes a new data envelopment analysis (DEA) method for priority determination in the AHP and extends it to the group AHP situation. In this new DEA methodology, two specially constructed DEA models that differ from the DEAHP model are used to derive the best local priorities from a pairwise comparison matrix or a group of pairwise comparison matrices no matter whether they are perfectly consistent or inconsistent. The new DEA method produces true weights for perfectly consistent pairwise comparison matrices and the best local priorities that are logical and consistent with decision makers (DMs)’ subjective judgments for inconsistent pairwise comparison matrices. In hierarchical structures, the new DEA method utilizes the simple additive weighting (SAW) method for aggregation of the best local priorities without the need of normalization. Numerical examples are examined throughout the paper to show the advantages of the new DEA methodology and its potential applications in both the AHP and group decision making.  相似文献   

5.
Pairwise comparison matrices are often used in Multi-attribute Decision Making for weighting the attributes or for the evaluation of the alternatives with respect to a criteria. Matrices provided by the decision makers are rarely consistent and it is important to index the degree of inconsistency. In the paper, the minimal number of matrix elements by the modification of which the pairwise comparison matrix can be made consistent is examined. From practical point of view, the modification of 1, 2, or, for larger matrices, 3 elements seems to be relevant. These cases are characterized by using the graph representation of the matrices. Empirical examples illustrate that pairwise comparison matrices that can be made consistent by the modification of a few elements are present in the applications.  相似文献   

6.
Fuzzification of the analytic hierarchy process (AHP) is of great interest to researchers since it is a frequently used method for coping with complex decision making problems. There have been many attempts to fuzzify the AHP. We focus particularly on the construction of fuzzy pairwise comparison matrices and on obtaining fuzzy weights of objects from them subsequently. We review the fuzzification of the geometric mean method for obtaining fuzzy weights of objects from fuzzy pairwise comparison matrices. We illustrate here the usefulness of the fuzzified AHP on a real-life problem of the evaluation of quality of scientific monographs in university environment. The benefits of the presented evaluation methodology and its suitability for quality assessment of R&D results in general are discussed. When the task of quality assessment in R&D is considered, an important role is played by peer-review evaluation. Evaluations provided by experts in the peer-review process have a high level of subjectivity and can be expected in a linguistic form. New decision-support methods (or adaptations of classic methods) well suited to deal with such inputs, to capture the consistency of experts’ preferences and to restrict the subjectivity to an acceptable level are necessary. A new consistency condition is therefore defined here to be used for expertly defined fuzzy pairwise comparison matrices.  相似文献   

7.
This paper examines the problem of extracting object or attribute weights from a pairwise comparison ratio matrix. This problem is approached from the point of view of a distance measure on the space of all such matrices. A set of axioms is presented which such a distance measure should satisfy, and the uniqueness of the measure is proven. The problem of weight derivation is then shown to be equivalent to that of finding a totally transitive matrix which is a minimum distance from the given matrix. This problem reduces to a goal programming model. Finally, it is shown that the problem of weight derivation is related to that of ranking players in a round robin tournament. The space of all binary tournament matrices is proven to be isometric to a subset of the space of ratio matrices.  相似文献   

8.
Analytic network process (ANP) addresses multi-attribute decision-making where attributes exhibit dependencies. A principal characteristic of such problems is that pairwise comparisons are needed for attributes that have interdependencies. We propose that before such comparison matrices are used—in addition to a test that assesses the consistency of a pairwise comparison matrix—a test must also be conducted to assess ‘consistency’ across interdependent matrices. We call such a cross-matrix consistency test as a compatibility test. In this paper, we design a compatibility test for interdependent matrices between two clusters of attributes. We motivate our exposition by addressing compatibility in Sinarchy, a special form of ANP where interdependency exists between the last and next-to-last level. The developed compatibility test is applicable to any pair of interdependent matrices that are a part of an ANP.  相似文献   

9.
The decision making problem considered in this paper is to rank n alternatives from the best to the worst, using the information given by the decision maker in the form of an \(n\times n\) pairwise comparison matrix. Here, we deal with pairwise comparison matrices with fuzzy elements. Fuzzy elements of the pairwise comparison matrix are applied whenever the decision maker is not sure about the value of his/her evaluation of the relative importance of elements in question. We investigate pairwise comparison matrices with elements from abelian linearly ordered group (alo-group) over a real interval. The concept of reciprocity and consistency of pairwise comparison matrices with fuzzy elements have been already studied in the literature. Here, we define stronger concepts, namely the strong reciprocity and strong consistency of pairwise comparison matrices with fuzzy intervals as the matrix elements (PCF matrices), derive the necessary and sufficient conditions for strong reciprocity and strong consistency and investigate their properties as well as some consequences to the problem of ranking the alternatives.  相似文献   

10.
The aim of the paper is to present a new global optimization method for determining all the optima of the Least Squares Method (LSM) problem of pairwise comparison matrices. Such matrices are used, e.g., in the Analytic Hierarchy Process (AHP). Unlike some other distance minimizing methods, LSM is usually hard to solve because of the corresponding nonlinear and non-convex objective function. It is found that the optimization problem can be reduced to solve a system of polynomial equations. Homotopy method is applied which is an efficient technique for solving nonlinear systems. The paper ends by two numerical example having multiple global and local minima. This research was supported in part by the Hungarian Scientific Research Fund, Grant No. OTKA K 60480.  相似文献   

11.
This paper extends and modifies the Analytic Hierarchy Process (AHP) and the Synthetic Hierarchy Method (SHM) of priority estimation to accommodate random data in the pairwise comparison matrices. It employs a Cauchy distribution to describe the pairwise comparison of alternatives in Saaty matrices, and shows how to modify these matrices in order to handle random data. The use of random data yields Saaty matrices that are not reciprocally symmetrical. Several variants of the AHP are then modified (i) to accommodate reciprocally asymmetric matrices, and (ii) to allow each priority estimate to be expressed on an interval of possible values, rather than as a single discrete point. The merits of interval estimation are illustrated by an example.  相似文献   

12.
This paper is a continuation of our 2004 paper “Max-algebra and pairwise comparison matrices”, in which the max-eigenvector of a symmetrically reciprocal matrix was used to approximate such a matrix by a transitive matrix. This approximation was based on minimizing the maximal relative error. In a later paper by Dahl a different error measure was used and led to a slightly different approximating transitive matrix. Here some geometric properties of this approximation problem are discussed. These lead, among other results, to a new characterization of a max-eigenvector of an irreducible nonnegative matrix. The case of Toeplitz matrices is discussed in detail, and an application to music theory that uses Toeplitz symmetrically reciprocal matrices is given.  相似文献   

13.
Several statistical procedures for estimation of the priority parameters in the setup of the Analytic Hierarchy Process (AHP) exist in the literature. The purpose of this article is to make appropriate comparisons of such statistical methods. Pairwise comparison matrices are simulated using different statistical distributions of the error part used in the procedures. Priority parameters are estimated for each simulated pairwise comparison matrix using the method suggested. Standard nonparametric statistical procedures are applied to check whether the order of the priority estimates is consistent with that of their parameter values irrespective of the choice of particular statistical procedure. Statistical procedures based on the reciprocal matrices are also compared with the eigenvalue method.  相似文献   

14.
The problem of derivation of the weights of alternatives from pairwise comparison matrices is long standing. In this paper, Lexicographic Goal Programming (LGP) has been used to find out weights from pairwise inconsistent interval judgment matrices. A number of properties and advantages of LGP as a weight determination technique have been explored. An algorithm for identification and modification of inconsistent bounds is also provided. The proposed technique has been illustrated by means of numerical examples.  相似文献   

15.
One of the most difficult tasks in multiple criteria decision analysis (MCDA) is determining the weights of individual criteria so that all alternatives can be compared based on the aggregate performance of all criteria. This problem can be transformed into the compromise programming of seeking alternatives with a shorter distance to the ideal or a longer distance to the anti-ideal despite the rankings based on the two distance measures possibly not being the same. In order to obtain consistent rankings, this paper proposes a measure of relative distance, which involves the calculation of the relative position of an alternative between the anti-ideal and the ideal for ranking. In this case, minimizing the distance to the ideal is equivalent to maximizing the distance to the anti-ideal, so the rankings obtained from the two criteria are the same. An example is used to discuss the advantages and disadvantages of the proposed method, and the results are compared with those obtained from the TOPSIS method.  相似文献   

16.
We consider a group decision-making problem where preferences given by the experts are articulated into the form of pairwise comparison matrices. In many cases, experts are not able to efficiently provide their preferences on some aspects of the problem because of a large number of alternatives, limited expertise related to some problem domain, unavailable data, etc., resulting in incomplete pairwise comparison matrices. Our goal is to develop a computational method to retrieve a group priority vector of the considered alternatives dealing with incomplete information. For that purpose, we have established an optimization problem in which a similarity function and a parametric compromise function are defined. Associated to this problem, a logarithmic goal programming formulation is considered to provide an effective procedure to compute the solution. Moreover, the parameters involved in the method have a clear meaning in the context of group problems.  相似文献   

17.
Computational Management Science - We consider decision problems of rating alternatives based on their pairwise comparisons according to two criteria. Given pairwise comparison matrices for each...  相似文献   

18.
A class of new affine-scaling interior-point Newton-type methods are considered for the solution of optimization problems with bound constraints. The methods are shown to be locally quadratically convergent under the strong second order sufficiency condition without assuming strict complementarity of the solution. The new methods differ from previous ones by Coleman and Li [Mathematical Programming, 67 (1994), pp. 189–224] and Heinkenschloss, Ulbrich, and Ulbrich [Mathematical Programming, 86 (1999), pp. 615–635] mainly in the choice of the scaling matrix. The scaling matrices used here have stronger smoothness properties and allow the application of standard results from non smooth analysis in order to obtain a relatively short and elegant local convergence result. An important tool for the definition of the new scaling matrices is the correct identification of the degenerate indices. Some illustrative numerical results with a comparison of the different scaling techniques are also included.  相似文献   

19.
20.
The estimation of the priorities from pairwise comparison matrices is the major constituent of the Analytic Hierarchy Process (AHP). The priority vector can be derived from these matrices using different techniques, as the most commonly used are the Eigenvector Method (EVM) and the Logarithmic Least Squares Method (LLSM). In this paper a new Fuzzy Programming Method (FPM) is proposed, based on geometrical representation of the prioritisation process. This method transforms the prioritisation problem into a fuzzy programming problem that can easily be solved as a standard linear programme. The FPM is compared with the main existing prioritisation methods in order to evaluate its performance. It is shown that it possesses some attractive properties and could be used as an alternative to the known prioritisation methods, especially when the preferences of the decision-maker are strongly inconsistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号