首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou MX  Foley JP 《Electrophoresis》2004,25(4-5):653-663
Dual opposite injection capillary electrophoresis (DOI-CE) is a family of CE techniques in which the sample is introduced into both ends of the capillary. For the analysis of compounds with widely varying pKa values using a voltage-driven separation scheme, DOI-CE is superior to conventional CE with sample introduction at only one end of the capillary due to DOI-CE's broader elution window. To enhance the DOI-CE separation, a running buffer with a microemulsion system was developed. Since DOI-CE works best under conditions of low electroosmotic flow (EOF), the suppression of EOF via the addition of a multiply charged cation (e.g., Zn2+) to the buffer was investigated, and was found to suppress the EOF effectively at moderate concentrations (2.5-10 mM). Three different dual opposite injection modes were studied: simultaneous electrokinetic injection, sequential electrokinetic injection, and sequential hydrodynamic injection. The injection bias in the first two electrokinetic injection modes was compared with the sequential hydrodynamic injection. Corrections in the bias of the electrokinetic injections were discussed, and an improved approach was suggested. Finally, the effect of the relative concentration of the multiply charged cation in the sample plug and running buffer on the peak shape of co-electroosmotic and counter-electroosmotic ions was examined, and found to be much more influential on the latter.  相似文献   

2.
Sample injection in microchip-based capillary zone electrophoresis (CZE) frequently rely on the use of electric fields which can introduce differences in the injected volume for the various analytes depending on their electrophoretic mobilities and molecular diffusivities. While such injection biases may be minimized by employing hydrodynamic flows during the injection process, this approach typically requires excellent dynamic control over the pressure gradients applied within a microfluidic network. The current article describes a microchip device that offers this needed control by generating pressure gradients on-chip via electrokinetic means to minimize the dead volume in the system. In order to realize the desired pressure-generation capability, an electric field was applied across two channel segments of different depths to produce a mismatch in the electroosmotic flow rate at their junction. The resulting pressure-driven flow was then utilized to introduce sample zones into a CZE channel with minimal injection bias. The reported injection strategy allowed the introduction of narrow sample plugs with spatial standard deviations down to about 45 μm. This injection technique was later integrated to a capillary zone electrophoresis process for analyzing amino acid samples yielding separation resolutions of about 4–6 for the analyte peaks in a 3 cm long analysis channel.  相似文献   

3.
A simple method to perform selective on-line preconcentration of protein samples in capillary electrophoresis (CE) is described. The selectivity, based on protein electrophoretic mobility, was achieved by controlling electroosmotic flow (EOF). A short section of dialysis hollow fiber, serving as a porous joint, was connected between two lengths of fused silica capillary. High voltage was applied separately to each capillary, and the EOF in the system was controlled independently of the local electric field intensity by controlling the total voltage drop. An equation relating the EOF with the total voltage drop was derived and evaluated experimentally. On-line preconcentration of both positively charged and negatively charged model proteins was demonstrated without using discontinuous background electrolytes, and protein analytes were concentrated by approximately 60-200-fold under various conditions. For positively charged proteins, positive voltages of the same magnitude were applied at the free ends of the connected capillaries while the porous joint was grounded. This provided a zero EOF in the system and a non-zero local electric field in each capillary to drive the positively charged analytes to the porous joint. CE separation was then initiated by switching the polarity of the high voltage over the second capillary. For negatively charged proteins, the procedure was the same except negative voltages were applied at the free ends of the capillaries. Mobility-based selective on-line preconcentration was also demonstrated with two negatively charged proteins, i.e. beta-lactoglobulin B and myoglobin. In this case, negative voltages of different values were applied at the free ends of the capillaries with different values, which provided a non-zero EOF in the system. The direction of EOF was the same as that of the electrophoretic migration velocities of the protein analytes in the first capillary and opposite in the second capillary. By controlling the EOF, beta-lactoglobulin B, which has a higher mobility, could be concentrated over 150-fold with a 15 min injection while myoglobin, which has a lower mobility, was eliminated from the system.  相似文献   

4.
 采用二元致孔剂原位聚合的方法制备了一种新型微电渗流毛细管原位柱。与三元致孔剂制柱方法相比 ,具有制备过程简单、重复性好、能够方便地通过改变致孔剂配比来改变柱床的孔径和孔结构的特点。得到的毛细管柱内部结构均匀 ,通透性好。通过对改变不同致孔剂配比所制备的原位柱的孔结构特征及电渗流情况考察 ,及对柱长和柱径与电渗流的关系的探讨 ,发现制备的原位柱在较高 pH值和较高的有机改性剂浓度条件下 ,电渗流均能保持在较低值 ,可以适应不同电泳分离模式的需要。  相似文献   

5.
A fast, convenient and sensitive method of capillary zone electrophoresis (CZE) and indirect UV detection was proposed for the determination of 16 amino acids. p-Aminobenzoic acid (PAB) was selected as a background electrolyte (BGE). An isolated cell included a BGE buffer part and an electrode buffer one, which were jointed with a glass frit. The isolated cell can prevent PAB from the electrode reaction and improve the stability of the detection baseline. The separation conditions of amino acids were investigated, such as different BGEs, BGE concentration, buffer pH and electroosmotic flow (EOF) modifiers. Under the selected separation conditions, 14 amino acid peaks could be separated in 12 min. The detection limits of the amino acids were in the range of 1.7 - 4.5 micromol/L. The isolated cell is suitable for reagents reacting on the electrodes in capillary electrophoresis. The proposed method has been successfully applied to the determination of the amino acids in tobacco samples.  相似文献   

6.
《Electrophoresis》2018,39(16):2117-2124
Goji berry, fruits of the plant Lycium barbarum L., has long been used as traditional medicine and functional food in China. In this work, a simple and easy‐operation on‐line concentration capillary electrophoresis (CE) for detection flavonoids in goji berry was developed by coupling of field amplified sample stacking (FASS) with an electroosmotic (EOF) pump driving water removal process. Due to the EOF pump and electrokinetic injection showing different influence on the concentration, the analytes injection condition should be systemically studied. Thereafter, the verification of the analytes injection conditions was achieved using response surface experimental design. Under the optimum conditions, 86–271 folds sensitivity enhancement upon normal capillary zone electrophoresis (CZE, 50 mbar × 5 s) were achieved for six flavonoids, and the detection limits ranged from 0.35 to 1.82 ng/mL; the LOQ ranged from 1.20 to 6.01 ng/mL. Eventually, the proposed method was applied to detect flavonoids in 30 goji berry samples from different habitats of China; and the results indicated that the flavonoids were rich in the eluent of 30–60% methanol, which provided a reference for extraction of goji berry flavonoids.  相似文献   

7.
Hsieh MM  Tseng WL  Chang HT 《Electrophoresis》2000,21(14):2904-2910
We demonstrated DNA preconcentration and separation in the presence of electroosmotic flow (EOF) using poly(ethylene oxide) (PEO) solutions. After injecting large volumes of DNA samples into a capillary filled with free tris(hydroxymethyl)aminomethane (Tris)-borate (TB) buffers, PEO solutions entered the capillary by EOF and acted as sieving matrices. In contrast to conventional methods (in the absence of EOF), controlling the EOF was also useful for resolution optimization. We have found that PEO adsorption on the capillary wall was more pronounced when low ionic strength buffers were used. Thus, the EOF decreased with increasing injection length, which led to longer migration times and changes in resolution and stacking efficiency. All resolution values were higher than 1.5 when 1.0 microg/mL DNA samples were injected at 240 V/cm for 60 s (0.67 microL). In addition, as low as 0.015 microg/mL DNA samples (an about 66-fold increase in sensitivity) were detected when the injection was performed at 250 V/cm for 60 s.  相似文献   

8.
This paper describes the analysis of large DNA fragments at pH > 10.0 by capillary electrophoresis (CE) in the presence of electroosmotic flow (EOF) using hydroxyethylcellulose (HEC) solution. HEC solution in the anodic reservoir enters the capillaries filled with high-pH buffer by EOF after sample injection. With respect to resolution, sensitivity, and speed, separation conducted under discontinuous conditions (different pH values of HEC solutions and buffer filling the capillary) is appropriate. Using HEC solution at concentrations higher than its entanglement threshold ensures a good separation of large DNA fragments in the presence of EOF at high pH. In addition to pH and HEC, the electrolyte species, dimethylamine, methylamine, and piperidine, play different roles in determining the resolution. The separation of DNA fragments ranging in size from 5 to 40 kilo base pairs was completed in 6 min using 1.5% HEC prepared in 20 mM methylamine-borate, pH 12.0, and the capillary filled with 40 mM dimethylamine-borate, pH 10.0. In comparison, this method allows faster separations of large DNA fragments compared with that conducted in the absence of EOF using dilute HEC solutions.  相似文献   

9.
Isoelectric focusing (IEF), traditionally accomplished in slab or tube gels, has also been performed extensively in capillary and, more recently, in microchip formats. IEF separations performed in microchips typically use electroosmotic flow (EOF) or chemical treatment to mobilize the focused zones past the detection point. This report describes the development and optimization of a microchip IEF method in a hybrid PDMS-glass device capable of controlling the mobilization of the focused zones past the detector using on-chip diaphragm pumping. The microchip design consisted of a glass fluid layer (separation channels), a PDMS layer and a glass valve layer (pressure connections and valve seats). Pressure mobilization was achieved on-chip using a diaphragm pump consisting of a series of reversible elastomeric valves, where a central diaphragm valve determined the volume of solution displaced while the gate valves on either side imparted directionality. The pumping rate could be adjusted to control the mobilization flow rate by varying the actuation times and pressure applied to the PDMS to actuate the valves. In order to compare the separation obtained using the chip with that obtained in a capillary, a serpentine channel design was used to match the separation length of the capillary, thereby evaluating the effect of diaphragm pumping itself on the overall separation quality. The optimized mIEF method was applied to the separation of labeled amino acids.  相似文献   

10.
Cheng YQ  Yao B  Zhang HD  Fang J  Fang Q 《Electrophoresis》2010,31(19):3184-3191
A high-speed DNA fragment separation system was developed based on a short capillary and a slotted-vial array automated sample introduction system. The injection process of DNA sample in a short capillary was investigated systematically with three injection techniques including constant-field-strength, low-field-strength and translational spontaneous injections. Under the optimized conditions, picoliter-scale sample plugs (corresponding to ca. 20-μm plug length) were obtained, which ensure the high-speed and high-efficiency separation for DNA fragments with a short effective separation length. Other separation conditions including the sieving matrix concentration, separation field strength and effective separation length were also optimized. The present system was applied in the separation of ΦX174-Hae III digest DNA marker. With an effective separation length of 2.5 cm, the separation could be achieved in <100 s with plate heights ranging from 0.21 to 0.74 μm (corresponding to plate numbers from 4.86 × 10(6) to 1.36 × 10(6)/m). The repeatabilities for the migration time of the eleven fragments were between 0.4 and 1.1% RSD (n=8). By using the automated continuous injection method, the separation for four different DNA samples could be achieved within 250 s. The present system was further applied in the fast sizing of real DNA samples of PCR products.  相似文献   

11.
In the present paper, two new methods, sol-gel and chemical bonding methods, were proposed for preparation of sulfonated fused-silica capillaries. In the sol-gel method, a fused-silica capillary was coated with the sol solution obtained by hydrolysis of 3-mercaptopropyltrimethoxysilane (MPTS) and tetramethoxysilane, and followed by age; while in the chemical bonding method, a capillary was chemically bonded directly with MPTS. Then, both the resulting capillaries were oxidized with an aqueous solution of hydrogen peroxide solution (H2O2) (30%, m/m) to obtain the sulfonated capillaries. The electroosmotic flow (EOF) for the sulfonated capillaries was found to remain almost constant within the studied pH range, and greater than that of the uncoated capillary. However, the coating efficiency of the capillary prepared by chemical bonding method was higher than that by sol-gel method, by comparing their magnitude of the EOF, the degree of disguise of the silanol and reproducibility of preparation procedure. The effects of the electrolyte's concentration and the content of methanol (MeOH) on the EOF were also studied. Especially, the study of the apparent pH (pH*) on the EOF in a water-MeOH system was reported. Finally, capillary electrophoretic separation of seven organic acids was achieved within 6.5 min under optimal condition using the chemically bonded sulfonated capillary. Moreover, separation of four alkaloids on the sulfonated capillary was compared with that on uncoated capillary in different conditions. Ion-exchange mechanism was found to play a key role for separation of these four basic analytes on the sulfonated capillary.  相似文献   

12.
The development of efficient and sensitive analytical methods for the separation, identification and quantification of complex biological samples is continuously a topic of high interest in biological science. In the present study, the possibility of using a polyether ether ketone (PEEK) capillary for the CE separation of peptides, proteins and other biological samples was examined. The performance of the tubing was compared with that of traditional silica capillaries. The CE analysis was performed using contactless conductivity detection (C4D), which eliminated any need for the detection window and was suitable for the detection of optically inactive compounds. In the PEEK capillary the cathodic EOF was low and of excellent stability even at extremes pH. In view of this fast biological anions were analyzed using an opposite end injection technique without compromising separation. A comparison of the performances of fused‐silica and polymer capillaries during the separation of model sample mixtures demonstrated the efficiency and separation resolution of the latter to be higher and the reproducibility of the migration times and peak areas is better. Furthermore, PEEK capillaries allowed using simple experimental conditions without any complicated modification of the capillary surface or use of an intricate buffer composition. The PEEK capillaries are considered as an attractive alternative to the traditional fused‐silica capillaries and may be used for the analysis of complex biological mixtures as well as for developing portable devices.  相似文献   

13.
Several on-column sample preconcentration modes--large-volume sample stacking using the EOF pump (LVSEP), LVSEP with anion-selective exhaustive injection (LVSEP-ASEI) and field-amplified sample injection with sample matrix removal using the electroosmotic flow (EOF) pump (FAEP)--were used to analyze some nonsteroidal anti-inflammatory drugs (NSAIDs) by capillary electrophoresis, and then compared. Methanol was the background electrolyte solvent to suppress the EOF. The effect of the type and length of the solvent plug, and the sample injection time were investigated in FAEP to determine the conditions that provided the best response. LVSEP, LVSEP-ASEI, and FAEP improved the sensitivity of the peak area by 100-, 1200-, and 1800-fold, respectively. The methodology developed, in combination with solid-phase extraction (SPE), was applied to the analysis of water samples.  相似文献   

14.
The principle of an on-line preconcentration method for capillary zone electrophoresis (CZE) named electrokinetic supercharging (EKS), is described and based on computer simulation the preconcentration behavior of the method is discussed. EKS is an electrokinetic injection method with transient isotachophoretic process, is a powerful preconcentration technique for the analysis of dilute samples. After filling the separation capillary with supporting electrolyte, an appropriate amount of a leading electrolyte was filled and the electrokinetic injection was started. After a while, terminating electrolyte was filled subsequently and migration current was applied. This procedure enabled the introduction of a large amount of sample components from a dilute sample without deteriorating separation. Computer simulation of the electrokinetic injection revealed that EKS was effective for the preconcentration of analytes with wide mobility ranges by proper choice of transient isotachophoresis (ITP) system and electroosmotic flow (EOF) should be suppressed to increase injectable amount of analytes under constant voltage mode. A test mixture of rare-earth chlorides was used to demonstrate the uses of EKS-CZE. When a 100 microL sample was used, the low limit of detectable concentration was 0.3 microg/L (1.8 nM for Er), which was comparable or even better than that of ion chromatography and inductively coupled plasma-atomic emission spectrometry (ICP-AES).  相似文献   

15.
The effect of high voltage on capillary electrophoresis (CE) separations of anionic analytes in nonaqueous separation media was investigated. Methanol, ethanol, 1-propanol, and 1-butanol were tested as background electrolyte (BGE) solvents. Experiments were carried out with a laboratory-built CE instrument suitable for high-voltage separations. Potentials up to 60 kV were applied with reversed polarity to generate unusually high field strengths (e.g. 2000 Vcm-1) and so achieve fast and efficient separations. Highest separation efficiencies were obtained with propanol as BGE solvent, and the dependency of the efficiency on the separation voltage was more or less linear. With the other alcohols, separation efficiency decreased or remained roughly constant with increasing absolute voltage. The separation efficiencies are discussed in terms of longitudinal diffusion, Joule heating, and analyte interaction with the capillary wall. Capillary preconditioning had a varied effect on the separations in the different BGEs as the BGE and the conditioning process affected the electroosmotic flow (EOF) velocity and direction.  相似文献   

16.
A brush-like copolymer consisting of poly(ethylene glycol) methyl ether methacrylate and N,N-dimethylacrylamide (PEGMA-DMA) was synthesized and used as a novel static physically adsorbed coating for protein separation by capillary electrophoresis for the first time, in order to stabilize electroosmotic flow (EOF) and suppress adsorption of proteins onto the capillary wall. Very stable and low EOF was obtained in PEGMA-DMA-coated capillary at pH 2.2-7.8. The effects of molar ratio of PEGMA to DMA, copolymer molecular mass, and pH on the separation of basic proteins were discussed. A comparative study of bare capillary with PEGMA-DMA-coated capillary for protein separation was also performed. The basic proteins could be well separated in PEGMA-DMA-coated capillary over the investigated pH range of 2.8-6.8 with good repeatability and high separation efficiency because the copolymer coating combines good protein-resistant property of PEG side chains with excellent coating ability of PDMA-contained backbone. Finally, the coating was successfully applied to the fast separation of other protein samples, such as protein mixture and egg white, which reveals that it is a potential coating for further proteomics analysis.  相似文献   

17.
A separation and determination of a mixture of 19 low-molecular-mass organic acids usually present in beer samples was developed using coelectroosmotic capillary zone electrophoresis. A polycation (hexadimetrine bromide, HDB) has been added to the electrolyte, which dynamically coats the inner surface of the capillary and causes a fast anodic electroosmotic flow. The main factors affecting reversal of the EOF such as type of modifier and concentration and influence of organic solvents were studied. Three types of modifiers, two alkylammonium salts (cethyltrimethylammonium bromide and tetradecyltrimethylammonium bromide) and a polycation (HDB) were investigated. The composition of the running buffer results on a 25% 2-propanol, 0.001% HDB and 50 mM sodium phosphate. The different instrumental parameters affecting the capillary electrophoretic separation were also optimized resulting on a -15 kV voltage with a hydrodynamic injection for 7 s with a UV detection at 210 nm. The applicability of the present method has been demonstrated for the determination of organic acids in different beer samples.  相似文献   

18.
Pittman JL  Schrum KF  Gilman SD 《The Analyst》2001,126(8):1240-1247
A recently developed technique for monitoring electroosmotic flow (EOF) in capillary electrophoresis by periodic photobleaching of a neutral fluorophore added to the running buffer has been further characterized and optimized and then applied to monitoring EOF during a typical capillary electrophoresis separation. The concentration of neutral fluorophore (rhodamine B) added to the running buffer for monitoring EOF has been decreased by one order of magnitude. The rate at which EOF can be measured has been increased from 0.2 to 1.0 Hz by decreasing the distance between the bleaching beam and the laser-induced fluorescence detector from 6.13 to 0.635 mm. The precision of the measured EOF ranges from 0.2 to 1.8%. Under typical experimental conditions, the dynamic range for flow measurements is 0.066 to 0.73 cm s(-1). Experimental factors affecting precision, signal-to-noise (S/N) ratio and dynamic range for EOF monitoring have been examined. This technique has been applied to measure EOF during a separation of phenolic acids with analyte detection by UV/VIS absorbance. The EOF monitoring method has been shown not to interfere with UV/VIS absorbance detection of analytes.  相似文献   

19.
The aim of this study was to develop a fast CE separation method by using multiple short-end injections in a capillary coated with quaternary ammonium chitosan (HACC), in order to determine the iodide content of pharmaceutical formulations. The BGE was composed of 20 mM tris(hydroxymethyl)aminomethane and 11 mM hydrochloric acid, at pH 8. The internal standard used was thiocyanate. Separations were performed in a fused silica capillary (32 cm total length, 8.5 cm effective length and 50 μm i.d.) coated with HACC and direct UV detection at 220 nm. EOF was modified by flushing the capillary with polymeric solution, resulting in a semi-permanent coating of controlled and stable EOF. The EOF was anodic at pH 8. Different strategies, using single and multiple injection short-end configurations, were studied to develop a CE method that resulted in a maximum number of iodide samples analyzed per hour: one plug and flush (Sflush) 35 samples/h, one plug without flush (SWflush) 76 samples/h, four plugs and flush (Mflush) 61 samples/h, and four plugs without flush (MWflush) 80 samples/h. Using the multiple injection configuration, it was possible to inject up to four plugs using spacer electrolytes with good separation efficiency and selectivity. The voltage application time needed to separate the eight peaks (iodide and thiocyanate) with MWflush was only 12s. The method was validated and samples were analyzed using MWflush. Good linearity (R(2)>0.999); a limit of detection 0.4 mg L(-1); intermediate precision better than 3.8% (peak area) and recovery in the range of 99-102% were obtained.  相似文献   

20.
To stabilize electroosmotic flow (EOF) and suppress protein adsorption onto the silica capillary inner wall, a cationic hydroxyethylcellulose-graft-poly (poly(ethylene glycol) methyl ether methacrylate) (cat-HEC-g-PPEGMA) graft copolymer composed of cationic backbone and bottle brush-like side chains was synthesized for the first time and used as a novel physically adsorbed coating for protein separation by capillary electrophoresis. Reversed (anodal) and very stable EOF was obtained in cat-HEC-g-PPEGMA-coated capillary at pH 2.2-7.8. The effects of degree of cationization, PEGMA grafting ratio, PEGMA molecular mass, and buffer pH on the separation of basic proteins were investigated. A systematic comparative study of protein separation in bare and HEC-coated capillaries and in cat-HEC-g-PPEGMA-coated capillary was also performed. The basic proteins can be well separated in cat-HEC-g-PPEGMA-coated capillary over the pH range of 2.8-6.8 with good repeatability and high separation efficiency, because the coating combines good protein-resistant property of bottle brush-like PPEGMA side chains with excellent coating ability of cat-HEC backbone. Besides its success in separation of basic proteins, the cat-HEC-g-PPEGMA coating was also superior in the fast separation of other protein samples, such as protein mixture, egg white, and saliva, which indicates that it is a promising coating for further proteomics analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号