首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The Feynman-Haken variational path integral theory is, for the first time, generalized to calculate the ground-state energy of an electron coupled simultaneously to a Coulomb potential and to a longitudinal-optical (LO) phonon field in parabolic quantum wires. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter and monotonically stronger as the effective wire radius decreases. We apply our calculations to several semiconductor quantum wires and find that the polaronic correction can be considerably large. Received 16 November 1998  相似文献   

2.
Within the framework of Feynman-Haken path integral theory, we calculate the ground-state energy of two-dimensional polarons in asymmetric quantum dots for arbitrary electron-phonon coupling constants. From a general three-dimensional Hamiltonian, some interesting problems, such as polarons in quasi-one-dimensional quantum wires and quasi-zero-dimensional asymmetric or symmetric quantum dots can be easily discussed only by taking different limit in the whole coupling regime. After the numerical calculation, we find that the relative polaronic correction increases monotonically with the decrease of effective dot size, and it becomes more pronounced with increasing dimension and asymmetry. Moreover, despite the insensitivity of relative polaronic enhancement to the variation of coupling constant at weak coupling, the correction is related to the coupling constant as the latter becomes larger.  相似文献   

3.
抛物量子点中弱耦合束缚极化子的相互作用能   总被引:8,自引:8,他引:0  
研究了抛物量子点中弱耦合束缚极化子的性质,采用改进的线性组合算符和幺正变换方法导出了束缚极化子的振动频率、有效质量和相互作用能。讨论了量子点的有效受限长度、电子LO声子耦合强度和库仑场对抛物量子点中弱耦合极化子的振动频率、有效质量和相互作用能的影响。数值计算结果表明:弱耦合束缚极化子的振动频率和相互作用能随有效受限长度的减少而急剧增大,振动频率随库仑势以及电子LO声子耦合强度的增加而增加,而相互作用能随库仑势以及电子LO声子耦合强度的增加而减小。有效质量仅与电子LO声子耦合强度有关。  相似文献   

4.
Using a variational approach, the binding energy of shallow hydrogenic impurities in a parabolic quantum wire is calculated within the effective mass approximation. The polaron effects on the ground-state binding energy in electric and magnetic fields are investigated by means of the Pekar–Landau variation technique. The results for the binding energy as well as a polaronic correction are obtained as a function of the applied fields and the impurity positions.  相似文献   

5.
We apply a Feynman path-integral variational approach combining with the average for the relative motion to study the stability of bipolaron in a quantum dot. The binding energy is calculated in different parameters. We find that an optimum quantum potential favors the formation of bipolaron. Compared with other methods in literature, the present approach is better than Laudau Pekar one in all coupling regime and full path-integral one in the strong coupling regime.  相似文献   

6.
We apply a Feynman path-integral variational approach combining with the average for the relative motion to study the stability of bipolaron in a quantum dot. The binding energy is calculated in different parameters. We find that an optimum quantum potential favors the formation of bipolaron. Compared with other methods in literature, the present pproach is better than Laudau-Pekar one in all coupling regime and full path-integral one in the strong coupling regime.  相似文献   

7.
The hydrogenic impurity binding energy in rectangular quantum well wire including both barriers of finite height and an applied electric field are studied. The polaron effects on the ground-state binding energy in electric field are investigated by means of Landau-Pekar variation technique. The results for the binding energy as well as polaronic correction are obtained as a function of the size of the wire, the applied electric field and the position of the impurity. Our calculations are compared with previous results in quantum wires of comparable dimensions.  相似文献   

8.
A variational approach is presented for calculating the ground-state (GS) binding energies of an electron bound to a Coulomb impurity in a polar semiconductor quantum dot (QD) with parabolic confinement in both two and three dimensions. We perform calculations for the entire range of the electron-phonon coupling constant and the Coulomb binding parameter and for arbitrary confinement length. It is found that the polaronic effect is stronger in a two dimensions (2D) dot than in a three dimensions (3D) dot and this trend is more pronounced with the increase of the coupling constant. Furthermore, the GS binding energy increases with increasing the Coulomb binding parameter in both 2D and 3D QDs for the same electron–phonon coupling constant. The results also indicate that this effect becomes much more pronounced with decreasing dimensionality.  相似文献   

9.
A combinative method of variational wavefunction and harmonic oscillator operator algebra, the ground-state energy correction to an electron confined in the quantum well of GaAs/Ga1-xAlx, As in the electric and magnetic fields along the growth axis has been studied by taking into account the interaction of different optical phonon modes with the electron. The ground-state energy is obtained as a function of the well width and the strength of electric and magnetic fields. The results show that the magnetic field greatly enhances the in terface-phonon part of the polaronic correction to electron ground-state energy in the well width d ≤ 300 Å. The electric field also enhances the polaron effect of interface mode, but decreases the part of bulk longitudinal mode.  相似文献   

10.
本文在声子色散和库仑束缚势的影响下利用压缩态变分法计算了抛物量子点中弱耦合极化子的基态能量。采用的变分方法是基于逐次正则并且利用单模压缩态变换处理通常被我们所忽略的在第一次幺正变换中产生的声子产生湮灭算符的双线性项。计算得出了在考虑声子色散和库仑束缚势的情况下抛物量子点中弱耦合极化子的基态能量的数学表达式。讨论了在弱耦合情况下,受限长度,电子-声子耦合常数,色散系数,库仑结合参数与基态能量之间的依赖关系。  相似文献   

11.
《Physics letters. A》1999,252(5):251-256
The Feynman-Haken variational path integral theory is generalized to calculate the binding energy Eb of an electron coupled simultaneously to an impurity with varing position and to a longitudinal-optical (LO) phonon field in parabolic quantum dots. Our calculations are applied to some semiconductor materials and the results for the binding energy are obtained for different confinement length R of the dot and arbitrary position of the impurity. It is shown that the polaronic correction to Eb decreases with the displacement of the impurity and increases with the confinement length of the dot. More interestingly, it is not so strong as the polaronic correction to the ground-state energy of the system, and the behaviours of their variation with R are totally different.  相似文献   

12.
侯俊华  梁希侠 《中国物理》2007,16(10):3059-3066
A 2D electron-longitudinal-acoustic-phonon interaction Hamiltonian is derived and used to calculate the ground-state energy of the acoustic polarons in two dimensions. The numerical results for the ground-state energy of the acoustic polarons in two and three dimensions are obtained. The 3D results agree with those obtained by using the Feynman path-integral approach. It is found that the critical coupling constant of the transition from the quasifree state to the self-trapped state in the 2D case is much smaller than in the 3D case for a given cutoff wave-vector. The theory has been used to judge the possibility of the self-trapping for several real materials. The results indicate that the self-trappings of the electrons in AlN and the holes in AlN and GaN are expected to be observed in 2D systems.  相似文献   

13.
抛物量子点中强耦合束缚极化子的性质   总被引:1,自引:1,他引:0       下载免费PDF全文
采用Pekar类型的变分方法研究了抛物量子点中强耦合束缚极化子的基态和激发态的性质。计算了束缚极化子的基态和激发态的能量、光学声子平均数。讨论了量子点的有效束缚强度和库仑束缚势对基态能量、激发态能量以及光学声子平均数的影响。数值计算结果表明:量子点中强耦合束缚极化子的基态和激发态能量及光学声子平均数均随量子点的有效束缚强度的增加而减小,基态、激发态能量随库仑束缚势的增加而减小,光学声子平均数随库仑束缚势的增加而增大。  相似文献   

14.
嵌入量子点的介观Aharonov-Bohm环的基态与持续电流   总被引:4,自引:0,他引:4       下载免费PDF全文
叶剑斐  叶飞  丁国辉 《物理学报》2003,52(2):468-472
对嵌入量子点的介观金属环进行了研究.在二级微扰变分近似下得出了其基态能量表达式和基态持续电流表达式,并在库仑排斥势趋于无穷大的假设下,得到了系统Kondo温度及持续电流的数值计算结果.并且将它们与一级微扰变分近似所得结果进行了对比,指出了它们之间存在的差异,对于这一系统二级微扰变分近似将给出更好的数值计算结果. 关键词: Kondo效应 持续电流 变分法  相似文献   

15.
A simple variational displacement phonon basis, obtained through the modified Lang-Firsov (MLF) transformation, is proposed to study the Holstein model. This phonon basis contains only one variational parameter, but capable of describing lattice distortions at distant sites from the charge carrier. A perturbation method based on this MLF basis is employed to calculate the single-electron ground-state energy and the dispersion of the polaronic band. The ground-state (k=0) energy obtained up to the second-order perturbation within this approach agrees well with the available numerical results for the entire range of coupling strength.  相似文献   

16.
Within the framework of second-order Rayleigh-Schrödinger perturbation theory, the polaronic correction to the first excited state energy of an electron in an quantum dot with anisotropic parabolic confinements is presented. Compared with isotropic confinements, anisotropic confinements will make the degeneracy of the excited states to be totally or partly lifted. On the basis of a three-dimensional Fröhlichs Hamiltonian with anisotropic confinements, the first excited state properties in two-dimensional quantum dots as well as quantum wells and wires can also be easily obtained by taking special limits. Calculations show that the first excited polaronic effect can be considerable in small quantum dots.  相似文献   

17.
无限深量子阱中强耦合极化子的基态结合能   总被引:3,自引:0,他引:3  
李亚利  肖景林 《发光学报》2005,26(4):436-440
研究了无限深量子阱中极化子的基态性质,采用线性组合算符和变分相结合的方法导出了强耦合极化子的振动频率λ、基态能量E0和基态结合能Eb,讨论了阱宽L和电子-LO声子耦合强度α对强耦合极化子的振动频率λ、基态能量E0和基态结合能Eb的影响。通过数值计算,结果表明:强耦合极化子的振动频率和基态结合能随阱宽L的增大而减小,随电子-LO声子耦合强度α的增强而增大;基态能量随阱宽L的增大而减小,其绝对值随电子-LO声子耦合强度α的增强而增大;当量子阱阱宽L趋近于无限大和无限小两种极限情况下,分别与三维和二维极化子的结果相一致。  相似文献   

18.
The ground-state polaron self-trapped energy and effective mass due to the surface optical (SO) phonon modes in a freestanding wurtzite GaN nanowire (NW) were studied by means of the Lee–Low–Pines variational approach. Based on the dielectric continuum and Loudon’s uniaxial crystal models, the polar optical phonon modes in the one-dimensional (1D) systems are analyzed, and the vibrating spectra of SO modes and electron–SO phonon coupling functions are discussed and analyzed. The calculations on the ground-state polaron self-trapped energy and correction of effective mass due to the SO phonon modes in the 1D GaN NWs reveal that the polaron self-trapped energy and correction of effective mass are far larger than those in 1D GaAs NW systems. The reasons resulting in this obvious difference in the two 1D structures are mainly due to the different electron–phonon coupling constants and electron effective masses of bulk materials constituting the two types of 1D confined system. Finally, the polaronic properties of the wurtzite 1D GaN NWs have been compared with those of the wurtzite GaN-based two-dimensional quantum wells. The physical origination of these characteristics and their distinction in the different-dimensionality systems has been analyzed in depth.  相似文献   

19.
A novel variational approach is presented for the calculation of the ground-state energy of the polaron in arbitrary N dimensions in the strong-coupling limit. By using the phonon coherent state to represent the wavefunction of phonons, a self-consistent integro-differential equation for the electron wavefunction is derived. The calculated results of the ground-state energy for N = 1, 2 and 3 agree well with the best results in the literature. It is also found that, for arbitrary N, the present results are less than the Feynman path integral ones by small percentages. It is proposed that this approach should be universal for systems involving polarons in the strong-coupling regime.  相似文献   

20.
李红  孔小均 《中国物理》2004,13(5):759-764
A simple method for calculating the free-exciton binding energies in the fractional-dimensional-space model for single-quantum-well structure has been extended to quantum-well wires and quantum dots, in which the real anisotropic system is modelled through an effective isotropic environment with a fractional dimension. In this scheme, the fractional-dimensional parameter is chosen via an analytical procedure and involves no ansatz. We calculated the ground-state binding energies of excitons and donors in quantum-well wires with rectangular cross sections. Our results are found to be in good agreement with previous variational calculations and available experimental measurements. We also discussed the ground-state exciton binding energy changing with different shapes of quantum-well wires,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号