首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of?8.6(±0.2) ‰ for δ18O and?58(±2) ‰ for δ2H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of?0.17(±0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.  相似文献   

2.
The present study examines the isotopic and hydrochemical composition of 18 inland spring waters and 3 coastal karstic spring waters, covering the period between October 2005 and March 2008. The stable isotopes (18O, 2H) processing has revealed the absence of significant evaporation phenomena and that the origin of fresh water samples is meteoric. Using 18O values in rainfall waters, an average line of isotopic depletion with altitude has been constructed, extracting a rate of?0.45‰/100 m as typical for the study area. Furthermore, the mean altitude of recharge of the springs has been estimated by plotting the groundwater sampling points on a δ18O versus altitude diagram. Hydrochemistry results have shown that the dissolution of carbonate, flysch and ophiolitic formations defines the hydrochemical characteristics of groundwater. Moreover, seawater intrusion in the coastal area is significantly high, causing the water in the three karstic springs to be brackish.  相似文献   

3.
This paper presents the stable isotope data of oxygen (δ18O) and hydrogen (δ2H) in groundwater from 83 sampling locations in Slovenia and their interpretation. The isotopic composition of water was monitored over 3 years (2009–2011), and each location was sampled twice. New findings on the isotopic composition of sampled groundwater are presented, and the data are also compared to past studies regarding the isotopic composition of precipitation, surface water, and groundwater in Slovenia. This study comprises: (1) the general characteristics of the isotopic composition of oxygen and hydrogen in groundwater in Slovenia, (2) the spatial distribution of oxygen isotope composition (δ18O) and d-excess in groundwater, (3) the groundwater isotope altitude effect, (4) the correlation between groundwater d-excess and the recharge area altitude of the sampling location, (5) the relation between hydrogen and oxygen isotopes in groundwater in comparison to the global precipitation isotope data, (6) the groundwater isotope effect of distance from the sea, and (7) the estimated relation between the mean temperature of recharge area and δ18O in groundwater.  相似文献   

4.
Abstract

Measurements of deuterium content of the groundwater from neighbouring area of Danube Delta Biosphere Reserve show that the waters are meteoric in origin, but at the same time the results showed that the water for three sampling points could not originate from local groundwater and have their recharge area at high altitude and a considerable distance.

According to the δD values the following categories of waters were delineated:
  • (1) waters that belong to an confined aquifer in limestone and have their recharge in high altitude region, higher than 1000m (δD < -80‰)

    (2) waters tributary to the Danube river that have a small variability in time of δD values (δD > - 75‰)

    (3) local infiltration waters, situated in the West of the investigated area towards the continental platform of the Dobroudja, with high variability in time of δD values, due to seasonal effect (δD > - 70‰)

    (4) waters originated in mixing processes between the waters with different isotopic content. The one endmember is heavier isotopic water that belongs to local recharged waters (local infiltration waters and waters tributary to Danube river) and the other endmember is the isotopically light water.

  相似文献   

5.
Due to the ability of stable water isotopes to characterize the origin of water and connected processes of groundwater recharge, we used the isotope variations of hydrogen and oxygen in different water sources for assessing the recharge process in the Dhofar region. δ18O and δ2H of precipitation, spring water, and groundwater cover a range from ?10 to +2 and from ?70 to +7?‰ (vs Vienna Standard Mean Ocean Water), respectively, and correlate in a linear relationship close to the Global Meteoric Water Line. No obvious evaporation processes are detected. A clear signal of the recent precipitation is given by the annual monsoon. The monsoon signal is confirmed by several springs existing in the south at the foot of the Dhofar mountains and sources at Gogub above 450?m and Tawi Atir at 650?m above sea level. They occur here first in the form of water intercepted by trees as stemflow and throughflow. The isotope signature of groundwater in the Dhofar mountains reflects the climatic conditions at the time of recharge and the lithological features of the limestone matrix. To the north, the isotope patterns of the groundwater are continuously depleted from the monsoon signal along the outcropping aquifer D (Lower Umm Er Radhuma). Here, a more negative signature towards the wells in the Najd desert region was observed. Cyclone water that flooded wadis in the Dhofar region occasionally, as observed in November 2011, falls isotopically into the same range as we observed in the fossil groundwater. Taking into account the different sources of precipitation and groundwater and thus a clear distinction of the isotopic composition of the water sources, we conclude a recharge process divided into a southward and a northward component in the Dhofar region.  相似文献   

6.
We present the first results of a study of the Gacka River spring area, an important Croatian drinking water resource. Stable isotope data (obtained at the Stable Isotope Laboratory SILab in Rijeka) are used in combination with hydrological and meteorological data. The δ18O values give information on the mean catchment altitudes of the three main springs of Gacka River (Majerovo vrelo, Tonkovi?a vrelo and Pe?ina). Hydrological, meteorological and stable isotope data indicate good mixing of infiltrated and ground waters. The precipitation d-excess shows a seasonally varying influence of continental and maritime air masses.  相似文献   

7.
The precipitation is the input into the water system. Its stable isotope composition has to be known for the proper use and management of water resources. Croatia is not well represented in the Global Network of Isotopes in Precipitation (GNIP) database, and the geomorphology of the country causes specific local conditions. Therefore, at the Stable Isotope Laboratory (SILab), Rijeka, we monitor the stable isotope composition (δ18O, δ2H) of precipitation. Since δ18O and δ2H are well correlated, we concentrate the discussion on the δ18O distribution. Together with GNIP, our database contains 40 stations in Croatia and in the neighbouring countries. Their different latitudes, longitudes and altitudes give information of great detail, including the influence of the topographic structure on the precipitation in the south-eastern part of Europe, as well as the complex interplay of the different climate conditions in the area. Within a few hundred kilometres, the stable isotope values display a significant change from the maritime character in the south (mean δ18O around?6 to?8%‰) to the continental behaviour in the north (mean δ18O around?8 to?11%‰). Depending on the location, the mean δ18O values vary with altitude at a rate of approximately?0.2%‰/100 m and?0.4%‰/100 m, respectively. Also the deuterium excess has been found to depend on location and altitude. The data are being used to construct a δ18O map for the entire area.  相似文献   

8.
Ratios of stable isotopes of hydrogen and oxygen (2H/1H and 18O/16O) in river waters were measured to investigate the hydrological pathway of the Xijiang River, Southwest China. The δ2H and δ18O values of river waters exhibit significant spatial and temporal variations and the isotopic compositions vary with elevation, temperature and precipitation of the recharge area. Spatially, δ18O values of river waters from high mountain areas are lower than those from the lower reaches of the Xijiang River due to lower temperature and higher elevation for the recharge area. However, both 2H and 18O are enriched differently in river waters from the middle reaches during the high flow season, depending on the season and degree of anthropogenic disturbances (e.g. water impoundments). In contrast, deuterium excess (d-excess) values of waters from the middle reaches are substantially lower than those from the upper and lower reaches, suggesting that river waters may be resided in the reservoir and evaporation increases in the middle reaches of the Xijiang River.  相似文献   

9.
Data from a 10-month monitoring study during 2007 in the Everglades ecosystem provide insight into the variation of δ18O, δD, and ion chemistry in surface water and shallow groundwater. Surface waters are sensitive to dilution from rainfall and input from external sources. Shallow groundwater, on the other hand, remains geochemically stable during the year. Surface water input from canals derived from draining agricultural areas to the north and east of the Everglades is evident in the ion data. δ18O and δD values in shallow groundwater remain near the mean of?2.4 and?12 ‰, respectively. 18O and D values are enriched in surface water compared with shallow groundwater and fluctuate in sync with those measured in rainfall. The local meteoric water line (LMWL) for precipitation is in close agreement with the global meteoric water line; however, the local evaporation line (LEL) for surface water and shallow groundwater is δ D=5.6 δ18O+1.5, a sign that these waters have experienced evaporation. The intercept of the LMWL and LEL indicates that the primary recharge to the Everglades is tropical cyclones or fronts. δ deuterium to δ18O excess (Dex values) generally reveal two moisture sources for precipitation, a maritime source during the fall and winter (D ex>10 ‰) and a continental-influenced source (D ex<10 ‰) in the spring and summer.  相似文献   

10.
The routine methods for stable oxygen and hydrogen isotope analysis of water involve water–CO2 gas equilibration and water reduction on hot metal (e.g. Zn, Cr, U) and subsequent mass spectrometric analysis of the evolved gases of CO2 and H2 for 18O/16O and 2H/1H ratios, respectively. Precise determination of the isotopic composition of water in brines with application of these standard methods is still problematic and technically often impossible due to detrimental influence of dissolved salts. The new method of brine desalination presented in this study overcomes the problem of the isotope salt effects encountered during the application of the routine techniques for the determination of the isotopic composition of high saline waters. The procedure combines two technical steps: (i) the chemical precipitation of Mg and Ca ions as insoluble non-hydroscopic fluorides, and (ii) the vacuum distillation of water from solution–precipitate mixture. The application of simple vacuum distillation allows full extraction of water and dehydration of remaining salts in a temperature range from 300 to 350?°C without hydrogen and oxygen isotope fractionation. The precision and accuracy of δ18O and δ2H determination of saline waters and brines with prior application of AgF desalination procedure is comparable with that usually obtained for fresh waters.  相似文献   

11.
The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3H values were around 8 TU in 2015, short-term 3H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006–2015 supplement adding to the Danube isotope set published earlier.  相似文献   

12.
The present study examines the isotopic and hydrochemical composition of 18 inland spring waters and 3 coastal karstic spring waters, covering the period between October 2005 and March 2008. The stable isotopes ((18)O, (2)H) processing has revealed the absence of significant evaporation phenomena and that the origin of fresh water samples is meteoric. Using (18)O values in rainfall waters, an average line of isotopic depletion with altitude has been constructed, extracting a rate of-0.45‰/100?m as typical for the study area. Furthermore, the mean altitude of recharge of the springs has been estimated by plotting the groundwater sampling points on a δ(18)O versus altitude diagram. Hydrochemistry results have shown that the dissolution of carbonate, flysch and ophiolitic formations defines the hydrochemical characteristics of groundwater. Moreover, seawater intrusion in the coastal area is significantly high, causing the water in the three karstic springs to be brackish.  相似文献   

13.
ABSTRACT

The Lake Chad Basin (LCB) is an endorheic transboundary catchment highly vulnerable to drought. For effective groundwater management, recharge areas need identification and replenishment quantification. At present, little research exploring unsaturated zone water flow processes and groundwater recharge are available. In this study, 12 vertical soil profiles were analysed for stable water isotopes and chloride concentration to estimate evaporation and groundwater renewal. Most δ18O and δ2H isotope profiles reveal typical arid environment patterns, with maximum enrichment at depths between 2.5 and 20?cm and depletion towards the surface (atmospheric influence) and depth (mixing and diffusion). Average annual dry season evaporation rates in Salamat and Waza Logone range from 5 to 30?mm, in Bahr el Ghazal and Northern Lake Chad from 14 to 23?mm. According to the chloride mass balance (CMB), the average annual recharge rate is estimated between 3 and 163?mm in Salamat and Waza Logone and less than 1 mm in Bahr el Ghazal and Northern Lake Chad. Based on the CMB results, potential recharge sites were identified, while estimated soil evaporation corresponds to plant water use at the initial growing stage, which is an important component in irrigation water management.  相似文献   

14.
Abstract

We investigated physical, chemical and isotope (S, O) parameters of sulfate from acid mine drainage from the polymetallic sulfide ore deposit Freiberg (Germany), which was mined for more than eight hundred years. Two main groups of water were distinguished:

1. Flowing mine water with sulfate concentrations of less than 9000 mg/1 and pH values higher than 3.2

2. Pore water in weathered low grade ores and pools with sulfate concentrations higher than 9000 mg/1 and pH values below 3.2.

The sulfur and oxygen isotope composition of sulfate from flowing mine waters reflects mixing of sulfate from two sulfur sources: a) atmospheric sulfur from precipitation and b) sulfate formed as a result of sulfide oxidation processes. Sulfur isotope values of mine water sulfate were used to estimate the contribution of sulfate derived through oxidation of sulfides. The sulfur isotope composition of pore water sulfate and precipitated sulfate (jarosite) from weathered low grade ore samples is identical to the sulfur isotope composition of primary sulfides. The oxygen isotope composition of pore water sulfate from low grade ore samples indicates that the oxidation process proceeds relatively slowly in O2-depleted waters, probably without significant microbial catalysis.  相似文献   

15.
ABSTRACT

Karst springs in the Main Range of the Crimean Mountains and the Crimean Piedmont show a restricted range of values (δ18O?=?–10.5 to –8.0 ‰, δ2H?=?–72 to –58 ‰), somewhat more negative than the weighted mean of meteoric precipitation. This suggests preferential recharge at higher elevations during winter months. Groundwater tapped by boreholes splits in three groups. A first group has isotopic properties similar to those of the springs. The second group shows significantly lower values (δ18O?=?–13.3 to –12.0 ‰, δ2H?=?–95 to –82 ‰), suggesting recharge during colder Pleistocene times. The third group has high isotope values (δ18O?=?–2.5 to +1.0 ‰, δ2H?=?–24 to –22 ‰); the data points are shifted to the right of the Local Meteoric Water Line, suggesting water–rock exchange processes in the aquifer. These boreholes are located in the Crimean Plains and discharge mineralized (ca. 25 g L?1) thermal (65°C) water from a depth of 1600–1800 m. Groundwater associated with mud volcanoes on the Kerch peninsula have distinct isotope characteristics (δ18O?=?–1.6 to +9.4 ‰, δ2H?=?–30 to –18 ‰). Restricted δ2H variability along with variable and high δ18O values suggest water–rock interactions at temperatures exceeding 95 °C.  相似文献   

16.
To pinpoint the origin and mixing processes of mine waters, different mine water types from the polymetallic sulphide ore deposit ‘Himmelfahrt Fundgrube’ (Freiberg, Germany) were analysed by thermal ionisation mass spectrometry using lead and strontium isotope ratios.

Results show that the lead isotope composition of different mine waters results from a mixture of at least two sources: released lead from oxidised sulphide ores (mainly galena) and anthropogenic lead from groundwater. Furthermore, there are indications for an additional lead source. Strontium isotopes in mine waters identify at least three different sources: released strontium from weathered host rock (Grey Gneisses), released strontium from weathered gangue carbonates, and probably strontium from anthropogenic inputs. Contrary to former oxygen and sulphur isotope studies, strontium isotope compositions as well as hydrochemical parameters show the important role of gangue carbonates as an element source in mine waters.  相似文献   

17.
A hydrogeochemical and stable isotope study (2H and 18O) was carried out in the Cuvelai-Etosha Basin in order to characterize available groundwater and to identify possible recharge mechanisms for the perched aquifers. Data were collected during seven field campaigns between 2013 and 2015 from a total of 24 shallow and deep groundwater hand-dug wells. In the investigated groundwaters, hydrogencarbonate is the dominating anion in both well types, whereas cations vary between calcium and magnesium in deep wells, and sodium and potassium in shallow wells. Groundwater chemistry is controlled by dissolution of carbonate minerals, silicate weathering and ion exchange. Stable isotopic composition suggests that deep groundwater is recharged by high-intensity/large rainfall events, whereas the shallow wells can even be recharged by less-intense/small rainfall events. Water in deep wells reflect a mixture of water influenced by evaporation during or before infiltration and water that infiltrated through fast preferential pathways, whereas shallow wells are strongly influenced by evaporation. The findings of this research contribute to improve the understanding of hydrogeochemistry, recharge paths and temporal variations of perched aquifers.  相似文献   

18.
Plitvice Lakes waters were collected at 14 sampling points, including springs, tributaries and lakes, for the period 2002–2007. The results of the physical and chemical conditions of calcite precipitation as well as the δ13C values of dissolved inorganic carbon (DIC) were used to study the processes influencing calcite precipitation. Significant differences between spring, lake and stream waters as well as changes in the downstream direction were observed. The correlation between δ13CDIC values and physico-chemical conditions for calcite precipitation showed that calcite precipitates in lake waters which are oversaturated with respect to CaCO3 (I sat values 4–10) and with δ13CDIC values between?11.5 and?8.5 ‰. In spring waters, the δ13CDIC values were more negative, from?14 to?12 ‰, and I sat values of 1–2 indicated that equilibrium conditions for calcite precipitation were not attained. The downstream increase in δ13CDIC correlated with the increase in the δ13C values of calcite in the lake sediments, suggesting that the freshwater calcite was mainly of autochthonous origin and precipitated within the water column in isotopic equilibrium with DIC.  相似文献   

19.
Abstract

The study is focused on the dolomite-limestone drinking water aquifers in the Bo? massif, as well as on the andesite-aquifer containing mineral water in the vicinity of Roga?ka Slatina. The catchment area is limited and both drinking and mineral waters are discharged from the same source. The increasing use of deeper aquifers means that natural springs and shallow wells have become sporadic. Consequently new techniques of investigating recharge and aquifer capacity are required which can augment classical hydrogeological methods.

Current research into the mineral and drinking water aquifers in the area of Roga?ka Slatina is based on measuring the isotopic composition of light elements, (H, C and O) as natural tracers. It can be concluded that all the groundwaters investigated are typically infiltrated meteoric water. The drinking waters are generally young and were infiltrated up to about ten years ago. The isotopic composition of oxygen is similar to recent precipitation (δ18O = -9.3 ± 1‰) and the drinking waters contain tritium. It was found that exploited mineral waters recharged aquifers during colder periods; they are only partly mixed with younger water as can be seen from the isotopic composition of oxygen and corrected 14C dating, which puts the mean ages at between around 100 and 8,000 years. With regard to the “nuclear period” (1960-64) with abnormally high tritium activities of precipitation, all the waters examined can be divided into at least three main infiltration groups depending on their measured tritium content: around 35 years old (> 80 T.U.), older (> 10 T.U.) and younger (10 to 60 T.U.). Detailed dating is possible following the above classification. Isotope exchange between rocks and water is negligible and therefore very deep circulation at the temperature conditions above 80°C does not occur. Dissolved inorganic carbon (DIC) in the drinking waters is the result of equilibrium reactions between carbonates and organically produced CO213C = - 14.5 ± ‰), while the high concentrations of DIC (δ13C = + 3 ±‰) and CO2 observed in the mineral waters are generated by low-temperature decarbonatization processes and indicate the deep origin of CO2, from where gas migrates into mineral water aquifers.

Correlation analyses between the parameters studied are performed. Useful conclusions concerning water circulation and the capacities of aquifer reservoirs are described which support the future optimal pumping of mineral and drinking water at the limited catchment area of Roga?ka Slatina and Bo?.  相似文献   

20.
The paper gives data on isotope composition of interstitial and near-bottom waters sampled in a region of gas-hydrate formation in the Sea of Okhotsk. The studies shows that heavy isotope of oxygen and hydrogen is used in gas-hydrate formation, with the result that isotope composition of its constitution water constitutes δ18O = +1.99‰, δD = +23‰ relatively to SMOW. Formation of autogenic carbonates leads to isotope exchange with interstitial water wich, in turn, changes its primary isotope composition in the direction of increasing of O-18 content. The near-bottom waters are isotope-light relatively to the SMOW standard and to the mean isotope composition of interstitial water in the studied region of gas-hydrate spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号