首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Carbon and oxygen isotope compositions have been determined for carbonate minerals from different types of carbonatites (large carbonatite bodies, veins, eruptive breccia), as well as from different temperature classes of carbonatites (according to Samoilov [1]). It could be shown, that only high temperature carbonatites exhibit small variations of δ18O and δ13C falling in the range of “high temperature mantle carbonates”, whereas low temperature calcites and dolomites show wide variations in δ18O. These changes in both isotope and mineral compositions of low temperature carbonatites are interpreted as a result of repeated interaction with fluids. The oxygen isotope ratios in most of the eruptive breccia have been changed by secondary processes. The primary deep-seated isotope record has been preserved only in samples, in which carbonate occurs as fine-grained calcite groundmass.

Preliminary results on oxygen isotope composition of different silicate minerals (amphibole, magnetite, biotite, albite, apatite) indicate isotope equilibrium for the mineral pair calcite-amphibole with isotope temperatures representing superimposed processes.  相似文献   

2.
An isotopic monitoring was undertaken in 2012–2014 at Lake ?abińskie (Mazurian Lakeland, NE Poland). The aim was to identify the factors and processes controlling an isotopic composition of the lake water and to explore the mechanism responsible for recording the climatic signal in stable isotope composition of deposited carbonates. δ18O and δ2H in the precipitation, lake water column, inflows and outflow, δ18O and δ13C in the carbonate fraction of sediments trapped in the water column were recorded with monthly resolution. A relationship between δ18O and δ2H in local precipitation was used to estimate the local meteoric water line. The dataset obtained for the water enabled to identify the modification of the water’s isotopic composition due to evaporation, connected with seasonal lake water stratification and mixing patterns. Statistically significant correlation coefficients suggest that the δ18O of the carbonate fraction in the sediment traps depends on the δ18O of rainfall water and on air temperature. The fractionation coefficient α shows that in summer months the carbonate precipitation process is closest to equilibrium. As expected for an exorheic lake, no significant correlation was observed between δ18O and δ13C in precipitated carbonate.  相似文献   

3.
The analyses of radioactive isotopes 14C, 137Cs and 210Pb, and stable isotope 13C were performed in the sediment cores, top 40 cm, taken in 2011 from karst lakes Pro??e and Kozjak in the Plitvice Lakes National Park, central Croatia. Frozen sediment cores were cut into 1 cm thick layers and dried. 14C activity in both carbonate and organic fractions was measured using accelerator mass spectrometry technique with graphite synthesis. 137Cs, 210Pb, 214Pb and 214Bi were measured by low level gamma spectrometry method on ORTECHPGe detector with the efficiency of 32%. Distribution of 14C activity from both lakes showed increase of the 14C activity in the top 10–12 cm in both carbonate and organic fractions as a response to thermonuclear bomb-produced 14C in the atmosphere in the sixties of the 20th century. Anthropogenically produced 137Cs was also observed in sediment profiles. Sedimentation rates for both lake sediments were estimated based on the unsupported 210Pb activity. Different 14C activity of the carbonate fraction (63–80 pMC, percent of modern carbon) and organic fraction (82–93 pMC) is the result of geochemical and biological processes of the sediment precipitation in the lake waters. This is also confirmed by the δ 13 C values of both fractions. Carbon isotope composition, a 14 C and δ 13 C, was compared with the lake sediments from the same lakes collected in 1989 and 2003.  相似文献   

4.
The potential for using Raman spectroscopy to measure stable oxygen isotope ratios (18O/16O) in carbonates is evaluated by measuring the Raman spectra and isotope ratios of a suite of 60 synthesized, 18O‐enriched calcite crystals ranging in composition from natural abundance (0.2 mole‐% 18O) to 1.2 mole‐% 18O. We determined the Raman‐inferred isotopic ratios (RRaman) by fitting curves to the ν1 symmetric stretching peak at 1086 cm−1 and the smaller satellite peak, associated with the ν1 stretching mode of singly substituted carbonate groups (C16O218O) at 1065 cm−1. The ratio of the two peak areas shows a 1:1 correspondence with the 18O/16O ratios derived from standard mass spectrometry methods, confirming that the relative intensities of the ν1 symmetric stretching peaks is a direct measure of the isotopic ratio in the carbonates. The 1‐sigma uncertainties of the RRaman values of the individual crystals were 0.00079 (384‰ PDB) and 0.00043 (210‰ PDB) for the four‐crystal sample means. This level of uncertainty is much too high to provide significant estimates of natural variability; however, there are multiple prospects for improving the accuracy and precision of the technique. Carbon isotope ratios in carbonates cannot be measured by our approach, but our results highlight the potential of Raman‐based isotope ratio measurement for C and other elements in minerals and organic compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

Stable isotope (13C, 18O, 34S) and trace element (Sr2+, Mg2+, Mn2+, Ba2+, Na+) investigations of elemental sulfur, primary calcites and mixtures of aragonite with secondary, post-aragonitic calcite from sulfur-bearing limestones have provided new insights into the geochemistry of the mineral forming environment of the native sulfur deposit at Machów (SE-Poland). The carbon isotopic composition of carbonates (δ13C = ?41 to ?47‰ vs. PDB) associated with native sulfur (δ34S = + 10 to + 15‰ vs. V-CDT) relates their formation to the microbiological anaerobic oxidation of methane and the reduction of sulfate derived from Miocene gypsum. From a comparison with experimentally derived fractionation factors the element ratios of the aqueous fluids responsible for carbonate formation are estimated. In agreement with field and laboratory observations, ratios near seawater composition are obtained for primary aragonite, whereas the fluids were relatively enriched in dissolved calcium during the formation of primary and secondary calcites. Based on the oxygen isotope composition of the carbonates (δ18O = ?3.9 to ?5.9‰ vs. PDB) and a secondary SrSO418O = + 20‰ vs. SMOW; δ34S = + 59‰ vs. V-CDT), maximum formation temperatures of 35°C (carbonates) and 47°C (celestite) are obtained, in agreement with estimates for West Ukraine sulfur ores. The sulfur isotopic composition of elemental sulfur associated with carbonates points to intense microbial reduction of sulfate derived from Miocene gypsum (δ34S ≈ + 23‰) prior to the re-oxidation of dissolved reduced sulfur species.  相似文献   

6.
Abstract

In the Mansfeld region (Central Germany) copper mining contributed to an enormous pollution of the environment. Metal- and sulphate-bearing sediments and leachates emerge from the former copper smelters and mining waste heaps, spread along local rivers and finally reach the Saale river. A sulphur isotope study on water and stream sediments was performed along the River “Böse Sieben” and from its tributaries to determine the different sulphur sources. Four major sulphur sources exist in the area: metal sulphide mineralisations (Kupferschiefer), metalliferous sulphidic flue dust, slag, and anhydrite and gypsum of Permian and Triassic age. We obtained δ34S(SO4)-values in water samples varying from +4‰ to ?18‰ CDT, clearly reflecting the input of sulphate from different sources. Sulphate from the oxidation of sulphidic mining residues is restricted to the mining area and cannot be traced for more than 5 km downstream. The major source for sulphate is the dissolution of gypsum and anhydrite. The sulphur isotope composition in dissolved and sedimentary adsorbed sulphate differs only slightly from each other. Microbial dissimilatory sulphate reduction can not be excluded in the shallow sediment layers.  相似文献   

7.
Mössbauer spectroscopy, X-ray diffractometry and chemical fractionation have been used to study the clay smaples in sediments of Charhan playa and Qinghai lake. The spectral components of the Mossbauer spectra of the samples are attributed to Fe2+ ions in chlorite and siderite, Fe3+ ions in clay minerals and hematite, and partly in amorphous ferric hydroxides. The essential difference in the mineral composition of the sediments of both lakes is the presence of siderite in the samples of Char han playa, whereas it is absent in the samples of Qinghai lake. The fraction of the amorphous ferric hydroxides is higher in the sediments of Qinghai lake. Total Fe2+/Fe3+ ratios increase with sediment depth of Charhan playa, whereas these ratios are altogether smaller and run through a maximum at a certain depth for Qinghai lake.  相似文献   

8.
This study presents selected results, applying environmental tracers to investigate lake water–groundwater interactions at two study sites located in Lusatia, Germany. The focus of the investigations were two meromictic pit lakes and their adjacent aquifers. In order to follow hydrodynamic processes between lake and groundwater, mixing patterns within the lakes as well as ages of lake and groundwater, water samples of ground- and lake water were collected at three occasions, representing summer and winter conditions in the aquatic systems. The water samples were analysed for stable isotopes (deuterium, oxygen-18) and tritium and sulphurhexafluoride (SF6 concentration). Lake water profiles of conductivity and 18O could validate the permanent stratification pattern of both the lakes. Groundwater data sets showed a heterogeneous local distribution in stable isotope values between rain and lake water. A two-component mixing model had been adopted only from 18O data to determine lake water proportions in the surrounding groundwater wells in order to correct measured tritium and SF6 concentrations in groundwater samples. This procedure had been hampered by upstream-located wells indicating strong 18O enrichment in groundwater samples. However, rough groundwater ages were estimated. For both study sites, Piston flow ages between 12.9 and 27.7 years were calculated. The investigations showed the good agreement between two different environmental dating tools, considering the marginal data sets.  相似文献   

9.
Abstract

Anoxic sediment surfaces coloured black by iron monosulfides (“black spots”) evolve in tidal sandflats of the Wadden Sea (southern North Sea) as a result of the degradation of buried organic matter. To follow the short- and long-term effects of organic matter burial on pore water and sediment isotopic biogeochemistry, formation of artificial black spots was initiated on the Groninger Plate (site RP63) in the backbarrier tidal flats of Spiekeroog island. Changes in concentrations (DOC, TA, TOC, sulfate, sulfide, TRS, Fe) and isotopic compositions (sulfate, sulfide, TRS, pyrite, TOC) were followed for up to 12 months and compared to reference areas. 13°C ratios of TOC clearly mirror the early diagenetic degradation of organic matter. At least temporarily closed system sulfate reduction is inferred for the artificial black spot from the variation of sulfate concentrations and stable sulfur isotope partitioning, In the interstitial waters of the black spot, 34S/32S values of coexisting dissolved sulfate and sulfide yield fractionation degrees between ?5 and ?25%. On the reference area, 34S/32S are fractionated by ?32 to ?42% as calculated from the isotope composition of solid phase reduced sulfur and pore water sulfate. Sulfur isotope fractionation seems to increase with decreasing sulfate reduction rate. Limiting factor seems to be the availability of DOC. Between the pyrite pool and the dissolved sulfide in the black spot, no significant isotope exchange is observed within 12 months.  相似文献   

10.

We evaluated the potential use of stable isotopes to establish linkages between the wintering grounds and the breeding grounds of the Pectoral Sandpiper (Calidris melanotos), the White-rumped Sandpiper (Calidris fuscicollis), the Baird's Sandpiper (Calidris bairdii), and other Neotropical migratory shorebird species (e.g., Tringa spp.). These species molt their flight feathers on the wintering grounds and hence their flight feathers carry chemical signatures that are characteristic of their winter habitat. The objective of our pilot study was to assess the feasibility of identifying the winter origin of individual birds by: (1) collecting shorebird flight feathers from several widely separated Argentine sites and analyzing these for a suite of stable isotopes; and (2) analyzing the deuterium and 18O isotope data that were available from precipitation measurement stations in Argentina. Isotopic ratios (δ13C, δ15N and δ34S) of flight feathers were significantly different among three widely separated sites in Argentina during January 2001. In terms of relative importance in separating the sites, δ34S was most important, followed by δ15N, and then δ13C. In the complete discriminant analysis, the classification function correctly predicted group membership in 85% of the cases (jackknifed classification matrix). In a stepwise analysis δ13C was dropped from the solution, and site membership was correctly predicted in 92% of cases (jackknifed matrix). Analysis of precipitation data showed that both δD and δ18O were significantly related to both latitude and longitude on a countrywide scale (p < 0.001). Other variables, month, altitude, explained little additional variation in these isotope ratios. Several issues were identified that will likely constrain the degree of accuracy one can expect in predicting the geographic origin of birds from Argentina. There was unexplained variation in isotope ratios within and among the different wing feathers from individual birds. Such variation may indicate that birds are not faithful to a local site during their winter stay in Argentina. There was significant interannual variation in the δD and δ18O of precipitation. Hence, specific locations may not have a constant signature for some isotopes. Moreover, the fractionation that occurs in wetlands due to evaporation significantly skews local δD and δ18O values, which may undermine the strong large-scale gradients seen in the precipitation data. We are continuing the research with universities in Argentina with a focus on expanding the breadth of feather collection and attempting to resolve the identified issues.  相似文献   

11.
The GasBench II peripheral along with MAT 253 combination provides a more sensitive platform for the determination of water isotope ratios. Here, we examined the role of adsorbed moisture within the gas chromatography (GC) column of the GasBench II on measurement uncertainties. The uncertainty in 18O/16O ratio measurements is determined by several factors, including the presence of water in the GC. The contamination of GC with water originating from samples as water vapour over a longer timeframe is a critical factor in determining the reproducibility of 18O/16O ratios in water samples. The shift in isotope ratios observed in the experiment under dry and wet conditions correlates strongly with the retention time of analyte CO2, indicating the effect of accumulated moisture. Two possible methods to circumvent or minimise the effect of adsorbed water on isotope ratios are presented here. The proposed methodology includes either the regular baking of the GC column at a higher temperature (120 °C) after analysis of a batch of 32 sample entries or conducting the experiment at a low GC column temperature (22.5 °C). The effects of water contamination on long-term reproducibility of reference water, with and without baking protocol, have been described.  相似文献   

12.
Abstract

Inter- and intra-molecular non-statistical isotope distributions do not only require the existence of a kinetic isotope effect on a defined enzyme catalyzed reaction, but also the prerequisite that this reaction is located at a metabolic branching point. Furthermore a metabolic and isotopic balance demand that the extent of the isotopic shift is reciprocal to the products' yields. On this base the 13C-enrichment of L-ascorbic acid in position C-1 and the depletion of glycerol in C-1 are interpreted. The 13C-pattern of natural malic acid is discussed as a consequence of isotope effects on the carboxylation of pyruvate and PEP and on the pyruvate dehydrogenase reaction. The patterns of natural products synthezised by transfer of “active acetaldehyde” is proposed to be due to an isotope effect on the thiamine pyrophosphate containing lyase reaction. An isotope effect on the reduction of “active formaldehyde” to “active methyl” and the existence of corresponding pools is responsible for 13C-enrichments and depletions of natural products in positions bearing these intermediates. Finally a model for the main nitrogen pools and for isotope discriminations between α-amino, ω-amino-N and amide pools in plants is proposed.  相似文献   

13.
The dominant transport mechanisms controlling the migration of contaminants in geologic media are advection and molecular diffusion. To date, defining which transport mechanism dominates in saturated, non-lithified sediments has been difficult. Here, we illustrate the value of using detailed profiles of the conservative stable isotope values of water (δ2H and δ18O) to identify the dominant processes of contaminant transport (i.e. diffusion- or advection-dominated transport) in near-surface, non-lithified, saturated sediments of the Interior Plains of North America (IPNA). The approach presented uses detailed δ18O analyses of glacial till, glaciolacustrine clay, and fluvial sand core samples taken to depths of 11–50 m below ground at 22 sites across the IPNA to show whether transport in the fractured and oxidized sediments is dominated by advection or diffusion. Diffusion is by far the dominant transport mechanism in fine-textured lacustrine and glacial till sediments, but lateral advection dominates transport in sand-rich sediments and some oxidized, fine-textured lacustrine and glacial till sediments. The approach presented has a number of applications, including identifying dominant transport mechanisms in geomedia and potential protective barriers for underlying aquifers or surface waters, constraining groundwater transport models, and selecting optimum locations for monitoring wells. These findings should be applicable to most glaciated regions of the world that are composed of similar hydrogeologic units (i.e. low K clay till layers overlain by higher K coarse-textured aquifers or weathered clay till layers) and may also be applicable to non-glaciated regions exhibiting similar hydrogeologic characteristics.  相似文献   

14.
Abstract

Leaf carbon isotope ratios (δ13C), an indicator of long-term intercellular carbon dioxide concentration, and also stem and root carbon isotope ratios were measured on the obligate CAM species Crassula argentea cultivated in pure and mixed cultures with the succulent C3 Peperomia obtusifolia in open-air conditions under two different levels of nitrogen and water supply.

As expected, a diminished water supply and a relatively dry and hot summer climate cause a shift of δ13C values to a less strong 13C discrimination (less negative δ13C values). A diminished nitrogen supply causes a shift of the δ13C values in direction of a higher 13C discrimination (more negative δ13C values), particularly in the leaves. Competition causes also an increased 13C discrimination, especially valid for shoot axes.

The shift of 13C/12C isotope ratios in case of nitrogen deficiency is discussed to be a result of a decreased PEPCase activity in the night.  相似文献   

15.
We have studied the temporal behaviour of the deuterium isotope ratio of water vapour emerging from a freshly cut plant leaf placed in a dry nitrogen atmosphere. The leaf material was placed directly inside the sample gas cell of the stable isotope ratio infrared spectrometer. At the reduced pressure (~40 mbar) inside the cell, the appearance of water evaporating from the leaf is easily probed by the spectrometer, as well as the evolving isotope ratios, with a precision of about 1 ‰. The demonstration experiment we describe measures the 2H/1H isotope ratio only, but the experiment can be easily extended to include the 18O/16O and 17O/16O isotope ratios. Plant leaf water isotope ratios provide important information towards quantification of the different components in the ecosystem water and carbon dioxide exchange.  相似文献   

16.
18O/16O isotope effects were observed at the cathode of a polymer electrolyte membrane fuel cell at 25 and 35°C. Results of experiments in which the 18O/16O isotope ratios of the oxygen gases supplied to and exhausted from the cell were measured revealed that the lighter isotope 16O reacted more preferentially to form water molecules at the cathode than the heavier one, 18O. The value of the oxygen isotope separation factor, S1, defined as the ratio of the 18O/16O isotope ratios of the oxygen gases supplied to and exhausted from the cell, ranged from 1.0030 to 1.0139, and tended to decrease with decreasing rate of oxygen utilisation (θ) and with increasing flow rate of the feed oxygen gas (DF). The value of another separation factor, S2, defined as the ratio of the 18O/16O isotope ratios of the exhausted oxygen gas and oxygen having reacted to form water molecules at the cathode, ranged from 1.0049 to 1.0304. The S2 value was much less affected by the change in θ and DF than the S1 value with the majority of the S2 value being in the range of 1.0240–1.0304.  相似文献   

17.
Fourier Transform Infrared Spectroscopy (FTIR) is a well established method for the characterization of mineralogical and geochemical properties of marine sediments. Understanding the biogeochemical changes in marine ecosystems is challenging task since it requires adequate analytical techniques and efforts. Biogeochemical characteristics of twenty one marine sediment samples collected off Chennai coast, Bay of Bengal, India were analyzed using FTIR spectroscopy. The FTIR peaks at 1460 cm1 (stretching vibration) and 880 cm1 (bending vibration) were used for carbonate determination. To verify the FTIR results, the obtained carbonate data were compared with carbonate values obtained by chemical analyses. The ranges of carbonate in sediments using FTIR and chemical analyses were 4.5–9.6% and 4.8–10%, respectively. The significant positive relationship was obtained between the carbonate results of FTIR and chemical analyses. This study demonstrates that instead of expensive and time consuming chemical methods, FTIR spectroscopic technique is found as a suitable, rapid and effective method for the quantification of carbonate in marine sediments.  相似文献   

18.
The use of isotopic carbon dioxide lasers for determination of carbon (and oxygen) isotope ratios was first demonstrated in 1994. Since then a commercial device called LARA?, has been manufactured and used for Helicobacter pylori breath tests using 13C-labelled urea. The major advantages of the optogalvanic effect compared with other infrared absorption isotope ratio measurement techniques are its lack of optical background and its high sensitivity resulting from a signal gain proportional to laser power. Continuous normalisation using two cells, a standard and sample, lead to high accuracy as well as precision. Recent advances in continuous flow measurement of 13C/12C ratios of CO2 in air and extensions of the technique to 14C, which can be analysed as a stable isotope, are described.  相似文献   

19.
Secondary carbonate precipitates (dripstones) formed on concrete surfaces in four different environments – Mediterranean and continental open-space and indoor environments (inside a building and in a karstic cave) – were studied. The fabric of dripstones depends upon water supply, pH of mother solution and carbonate-resulting precipitation rate. Very low δ13C (average?28.2‰) and δ18O (average?18.4‰) values showed a strong positive correlation, typical for carbonate precipitated by rapid dissolution of CO2 in a highly alkaline solution and consequent disequilibrium precipitation of CaCO3. The main source of carbon is atmospheric or biogenic CO2 in the poorly ventilated karstic cave, which is reflected in even lower δ13C values. Statistical analysis of δ13C and δ18O values of the four groups of samples showed that the governing factor of isotope fractionation is not the temperature, but rather the precipitation rate.  相似文献   

20.
Abstract

Much uncertainty still exists regarding spatial and temporal variability of stable isotope ratios (13C/12C and D/H) in different CH4-emission sources. Such variability is especially prevalent in freshwater wetlands where a range of processes can influence stable isotope compositions, resulting in variations of up to ~50‰ for δ13C-CH4 and ~150‰ for δD-CH4 values. Within a temperate-zone bog and marsh situated in southwestern Ontario, Canada, gas bubbles in pond sediments exhibit only minor seasonal and spatial variation in δ13C-CH4, δD-CH4 and δ13C-CO2 values. In pond sediments, CO2 appears to be the main source of carbon during methanogenesis either directly via CO2 reduction or indirectly through dissimilation of autotrophic acetate. In contrast, CH4 production occurs primarily via acetate fermentation at shallow depths in peat soils adjacent to ponds at each wetland. At greater depths within soils, σCO2 and H2O increasingly exert an influence on δ13C- and δD-CH4 values. Secondary alteration processes (e.g., methanotrophy or diffusive transport) are unlikely to be responsible for depth-related changes in stable isotope values of CH4. Recent models that attempt to predict δD-CH4 values in freshwater environments from D/H ratios in local precipitation do not adequately account for such changes with depth. Subenvironments (i.e., soil-forming and open water areas) in wetlands should be considered separately with respect to stable isotope signatures in CH4 emission models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号