共查询到20条相似文献,搜索用时 0 毫秒
1.
以N,N-二甲基甲酰胺(DMF)为溶剂, 利用静电纺丝法制备了聚丙烯腈(PAN)/β-环糊精(β-CD)纳米纤维. 通过场发射扫描电镜、红外光谱和粉末XRD对纳米纤维进行了表征, 并检测了纺丝溶液的电导率和黏度. 结果表明, β-CD的添加量可以改善纳米纤维的形貌, 固定在纤维上的β-CD保留了空腔结构, 为其在纳米纤维中发挥超分子特性提供了可能. 通过紫外-可见光谱法研究了PAN/β-CD纤维对亚甲基蓝(MB)溶液的吸附性能. 结果表明, 纳米纤维中的β-CD显著提高了PAN/β-CD纤维对MB的吸附能力, 使其在吸附分离、电化学传感器及药物控制释放等领域具有潜在的应用价值. 相似文献
2.
β-Cyclodextrin(β-CD) can be used for drug loading and release in biomedical application. β-Cyclodextrinsalicylate(β-CD-S) was synthesized by transesterification and then was electrodeposited on the surface of stainless steel(SS) by the anodic electrooxidation polymerization of the salicylate. 1H NMR spectrometry was used to determine the structure of β-CD-S. FTIR spectroscopy and XPS were applied to verifying the synthesized β-CD-S and the existence of the electrodeposited layer on the SS surface, respectively. Tafel plots and electrochemical impedance spectroscopy(EIS) technologies were used to estimate the corrosion resistance of β-CD-covered stainless steel. Electrochemical quartz crystal microbalance was applied to determining the drug loading of the stainless steel before and after its modification. E. coli was selected as a harmful microbe to evaluate the antibacterial properties of the stainless steel with the comparison of optical density values. 相似文献
3.
Based on target recycling amplification, the development of a new label-free, simple and sensitive colorimetric detection method for ATP by using un-modified aptamers and DNAzymes is described. The association of the model target molecules (ATP) with the corresponding aptamers of the dsDNA probes leads to the release of the G-quadruplex sequences. The ATP-bound aptamers can be further degraded by Exonuclease III to release ATP, which can again bind the aptamers of the dsDNA probes to initiate the target recycling amplification process. Due to this target recycling amplification, the amount of the released G-quadruplex sequences is significantly enhanced. Subsequently, these G-quadruplex sequences bind hemin to form numerous peroxidase mimicking DNAzymes, which cause substantially intensified color change of the probe solution for highly sensitive colorimetric detection of ATP down to the sub-nanomolar (0.33 nM) level. Our method is highly selective toward ATP against other control molecules and can be performed in one single homogeneous solution, which makes our sensing approach hold great potential for sensitive colorimetric detection of other small molecules and proteins. 相似文献
4.
以柚皮苷(NG)为印迹分子, β-环糊精为功能体, 六亚甲基二异氰酸酯为交联剂, 采用乳液聚合法制备了对NG具有特定识别能力的吸附材料: 棒状印迹聚合物. 扫描电镜及比表面分析仪测试结果表明印迹聚合物具有较大的孔隙及比表面积|红外及核磁共振谱研究证实了识别位点来自β-环糊精与NG羟基间的氢键作用. 采用平衡吸附实验方法研究了聚合物的吸附性能和选择性能. 实验结果表明, 棒状印迹聚合物(RMIP)对NG具有较高的亲和性和选择性. Scatchard分析表明, MIP在识别NG过程中存在2类结合位点: KD1=0.016 mmol/L, Bmax1=15.31 μmol/g, KD2=0.24 mmol/L, Bmax2=98.41 μmol/g. 当NG浓度为 0.02 mg/mL时, MIP及相应NIP对 NG的分配系数 KD 分别为4.38和2.86, 印迹因子α为1.53. 相似文献
5.
β-萘甲酰化β-环糊精的分子识别性能研究 总被引:8,自引:0,他引:8
最近二十年,外形似“锥简”,腔内疏水,脏外亲水的环糊精(Cyclodextrin,CD包括a,o,7-CD等),以其特有的结构在模拟酶、分子识别等众多领域内深受广大科学工作者重视[’-‘].为了获得更有效的模拟酶及分子识别功能体,我们已合成并报道了一系列含有发色基团的CD衍生物卜一句.本文利用基紫外光谱对产一茶甲酸化公CD的分子识别性能作了研究,结果显示3一位修饰CD(3一氧一八茶甲酸基一只CD)1对客体(环己醇)的包结性能是6一位修饰CD(6一氧一界禁甲酸基一八CD)2的4.4倍·结果还显示用环乙烷作客体时与主体正的包结和用… 相似文献
6.
以双酚A为模板分子, β-环糊精为功能单体, 六亚甲基二异氰酸酯为交联剂, 二甲基亚砜为溶剂, 采用沉淀聚合法合成了分子印迹β-环糊精聚合物. 用傅里叶变换红外光谱仪、 扫描电子显微镜对聚合物的结构进行表征. 从选择性、 吸附容量、 结合特性对吸附剂的性能进行了评价. 底物类似物的机会均等与机会不均等竞争吸附实验证明了β-CD-MIPs对底物的结合容量远大于对类似物的结合容量. 用热力学参数对实验数据进行拟合, 发现β-CD-MIPs对BPA的吸附为自发的放热过程, 温度低对吸附有利. 相似文献
7.
A novel covalently modified glassy carbon electrode with β-cyclodextrin was prepared via electropolymerization technique for the simultaneous determination of uric acid(UA), xanthine(XA), hypoxanthine(HX) and dopamine(DA). This new electrode presented an excellent electrocatalytic activity towards the oxidation of UA, XA, HX and DA by cyclic voltammetry(CV) method. The oxidation peaks of the four compounds were well defined and had the enhanced peak currents. The separation potentials of the oxidation peaks for DA-UA, UA-XA and XA-HX were 150, 390 and 360 mV in CV, respectively. By means of differential pulse voltammetry(DPV) method, the calibration curves in the ranges of 10-225, 5-105, 10-170 and 5-150 μmol/L were obtained for UA, XA, HX and DA, respectively. The lowest detection limits(S/N=3) were 5, 1.25, 5 and 1.5 μmol/L for UA, XA, HX and DA, respectively. The practical application of the modified electrode was demonstrated by the determination of DA in hydrochloride injection and UA, XA, HX in human urine samples. 相似文献
8.
《中国化学快报》2020,31(12):3117-3120
In this work, polymethacrylic acid (PMAA)-templated silver nanoclusters (Ag NCs) were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate (ATP) in a wide range of pH values. The fluorescence intensity of the Ag NCs could keep stable with pH values ranging from 2.5 to 9.3. The detection of ATP was based on the quenching of the fluorescent Ag NCs in the presence of ATP. The fluorescence quenching of the Ag NCs with increasing ATP concentration was studied at pH 2.5, 4.5, 7.0 and 8.5 which involved a wide pH environment in body fluids. The limit of detection (LOD) for ATP was as low as 0.1 mmol/L in an acidic environment with pH of 2.5 and all the linear correlation coefficients were satisfactory under wide-span pH values from 2.5 to 8.5. In addition, the sensitive determination of ATP was also achieved by adding copper ions (Cu2+). The high selectivity and rapid detection process proved that the fluorescent probe had great potential to detect ATP in biological samples under different pH conditions. 相似文献
9.
10.
Meijia Liu Xiangling Ren Xin Liu Longfei Tan Hui Li Jing Wei Changhui Fu Qiong Wu Jun Ren Hongbo Li Xianwei Meng 《中国化学快报》2021,31(12):3117-3120
In this work, polymethacrylic acid (PMAA)-templated silver nanoclusters (Ag NCs) were developed as the fluorescent probe for the efficient and sensitive detection of adenosine triphosphate (ATP) in a wide range of pH values. The fluorescence intensity of the Ag NCs could keep stable with pH values ranging from 2.5 to 9.3. The detection of ATP was based on the quenching of the fluorescent Ag NCs in the presence of ATP. The fluorescence quenching of the Ag NCs with increasing ATP concentration was studied at pH 2.5, 4.5, 7.0 and 8.5 which involved a wide pH environment in body fluids. The limit of detection (LOD) for ATP was as low as 0.1 mmol/L in an acidic environment with pH of 2.5 and all the linear correlation coefficients were satisfactory under wide-span pH values from 2.5 to 8.5. In addition, the sensitive determination of ATP was also achieved by adding copper ions (Cu2+). The high selectivity and rapid detection process proved that the fluorescent probe had great potential to detect ATP in biological samples under different pH conditions. 相似文献
11.
Yanlong He Jianniao TianJuanni Zhang Sheng ChenYixuan Jiang Yanchun ZhaoShulin Zhao 《Analytica chimica acta》2013
In this work, an ultrasensitive fluorescent polarization immunoassay (FPIA) method based on the quantum dot/aptamer/antibody/gold nanoparticles ensemble has been developed for the detection of adenosine triphosphate (ATP). DNA hybridization is formed when ATP is present in the PBS solution containing the DNA-conjugated quantum dots (QDs) and antibody-AuNPs. The substantial sensitivity improvement of the antibody-AuNPs-enhanced method is mainly attributed to the slower rotation of fluorescent unit when QDs-labeled oligonucleotides hybridize with antibody modified the gold nanoparticle. As a result, the fluorescent polarization (FP) values of the system increase significantly. Under the optimal conditions, a linear response with ATP concentration is ranged from 8 × 10−12 M to 2.40 × 10−4 M. The detection limit reached as low as 1.8 pM. The developed work provides a sensitive and selective immunoassay protocol for ATP detection, which could be applied in more bioanalytical systems. 相似文献
12.
This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the determination of adenosine in urine. 相似文献
13.
A sensitive method for the detection of catecholamine based on the fluorescence quenching of CdSe nanocrystals was developed. The sodium citrate-protected CdSe nanocrystals were synthesized in water solution. The fluorescence quenching of CdSe nanocrystals by dopamine, uric acid, ascorbic acid and catechol was studied; the results showed that all of these four kinds of compounds could quench the fluorescence of nanocrystals, and the quenching constant was 6.3 × 104, 2.57 × 103, 2.14 × 103 and 1.168 × 103, respectively. The order of sensitivity for the biosensor was: dopamine > lactic acid > ascorbic acid > catechol. This method shows good selectivity for dopamine, the detection limit reaches 5.8 × 10−8 M. 相似文献
14.
A sensitive and selective method for the paraoxon detection based on enzyme inhibition and fluorescence quenching was presented in this study. Under the catalytic effect of acetylcholinesterase (AChE), acetylthiocholine (ATCh) hydrolysis released thiocholine (TCh) which could react with N-(7-dimethylamino-4-methylcoumarin-3-yl) maleimide (DACM) to produce a blue fluorescence compound. Subsequently, AChE catalytic activity was inhibited with the addition of paraoxon, which caused TCh decreased, leading to a significant decrease of the blue fluorescent compound. Meanwhile, p-nitrophenol, the hydrolysis product of paraoxon, would lead to a quenching of the fluorescence. Therefore, fluorescence intensity of the system would decrease dramatically by a combined effect of enzyme inhibition and fluorescence quenching. Under optimal experimental conditions, an excellent linear relationship between the decrease of fluorescence intensity and paraoxon concentration over the range from 5.5 × 10−12 to 1.8 × 10−10 mol L−1 was obtained. Fluorescence background caused by nonenzymatic hydrolysis of ATCh or other matters was relatively low, the proposed approach offered adequate sensitivity for the detection of paraoxon at 3.5 × 10−12 mol L−1. 相似文献
15.
Angelo Zinellu Salvatore Sotgia Bastianina Scanu Elisabetta Pisanu Manuela Sanna Maria Franca Usai Luca Deiana Ciriaco Carru 《Electrophoresis》2010,31(16):2854-2857
Herein, we report a new CE method to measure adenine nucleotides adenosine 5′‐triphosphate, adenosine 5′‐diphosphate, and adenosine 5′‐monophosphate in red blood cells. For this purpose, 20 mmol/L sodium acetate buffer at pH 3.80 was used as running electrolyte, and the separation was performed by the simultaneous application of a CE voltage of 25 kV and an overimposed pressure of 0.2 psi from inlet to outlet. A rapid separation of these analytes in less than 1.5 min was obtained with a good reproducibility for intra‐ and inter‐assay (CV<4 and 8%, respectively) and an excellent analytical recovery (from 98.3 to 99%). The applicability of our method was proved by measuring adenine nucleotides in red blood cells. 相似文献
16.
《中国化学快报》2020,31(5):1231-1234
An ultrasensitive detection and effective removal material was successfully developed by using a pillar[n]arene-based supramolecular polymer gel (MTP5⊃HB). The MTP5⊃HB can ultrasensitively recognize Cu2+ and Fe3+, and the limits of detection (LODs) for Cu2+ and Fe3+ are 1.55 and 2.68 nmol/L, respectively. Additionally, the in-situ generated metallogel MTP5⊃HB-Cu can exclusively detect CN−, and the LOD for CN− is 1.13 nmol/L. Noticeably, the xerogel of MTP5⊃HB-Cu can effectively remove CN− from aqueous solution with 94.40% removal rate. Test kit based on MTP5⊃HB-Cu is also prepared for convenient detection of CN−. 相似文献
17.
A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3′-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs–aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1–20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules. 相似文献
18.
A sensitive and convenient strategy was developed for label-free assay of adenosine. The strategy adapted the fluorescence resonance energy transfer property between Rhodamine B doped fluorescent silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs) to generate signal. The different affinities of AuNPs toward the unfolded and folded aptamers were employed for the signal transfer in the system. In the presence of adenosine, the split aptamer fragments react with adenosine to form a structured complex. The folded aptamer cannot be adsorbed on the surface of AuNPs, which induces the aggregation of AuNPs under high ionic concentration conditions, and the aggregation of AuNPs leads to the decrease of the quenching ability. Therefore, the fluorescence intensity of Rhodamine B doped fluorescent SiNPs increased along with the concentration of adenosine. Because of the highly specific recognition ability of the aptamer toward adenosine and the strong quenching ability of AuNPs, the proposed strategy demonstrated good selectivity and high sensitivity for the detection of adenosine. Under the optimum conditions in the experiments, a linear range from 98 nM to 100 μM was obtained with a detection limit of 45 nM. As this strategy is convenient, practical and sensitive, it will provide a promising potential for label-free aptamer-based protein detection. 相似文献
19.
Trace fluoroquinolone residues in milk could be detected based on turn-on fluorescence of AMP/Tb CPNSs. It might provide a new platform for the rapid detection of antibiotic pollutants with the advantages of simple sample pretreatment processes and excellent selectivity. 相似文献
20.
In this work, a sensitive and selective detection method based on fluorescence resonance energy transfer (FRET) was developed for analyzing thiol compounds by using a novel fluorescent probe. The new fluorescent probe contains a disulfide bond which selectively reacts with nucleophilic thiolate through the thiol-disulfide exchange reaction. An obvious fluorescence recovery can be observed upon addition of the thiol compound in the fluorescent probe solution due to the thiol-disulfide exchange reaction and the destruction of FRET. This novel probe was successfully used to determine dithiothreitol (DTT), glutathione (GSH) and cysteine (Cys). The limits of detection (LOD) were 2.0 μM for DTT, 0.6 μM for GSH, and 0.8 μM for Cys. This new detection method was further investigated in the analysis of compound amino acid injection. 相似文献