首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow field-flow fractionation (Fl-FFF) with off-line electrothermal atomic absorption spectrometry (ETAAS) detection was developed and employed for particle size characterization of Ag NPs stabilized by citrate, pectin, and alginate. Citrate stabilized-Ag NPs were prepared from sodium borohydride reduction of silver nitrate. Sodium citrate was used as the capping agent to stabilize Ag NPs and prevent the aggregation process. Pectin stabilized- and alginate stabilized-Ag NPs were prepared from ascorbic acid reduction of silver nitrate. Pectin and alginate were used as the capping agent for pectin stabilized- and alginate stabilized-Ag NPs, respectively. Three types of Ag NPs were characterized by using FlFFF, zeta potentiometer, and TEM technique. The mean particle sizes of Ag NPs as characterized by FlFFF were 9 nm, 19 nm, and 45 nm for citrate stabilized-, pectin stabilized-, and alginate stabilized-Ag NPs, respectively, in deionized water. Further, FlFFF with ETAAS detection was employed to observe the aggregation of Ag NPs of various types in environmental water in the absence and presence of humic acid. Citrate stabilized-Ag NPs underwent aggregation more rapid than the pectin stabilized- and alginate stabilized-Ag NPs as the latter two types were sterically stabilized. Further, humic acid could prolong the stability of Ag NPs in the environment.  相似文献   

2.
ABSTRACT: BACKGROUND: The aim of this study is to investigate the functions of polymers and size of nanoparticles on the antibacterial activity of silver bionanocomposites (Ag BNCs). In this research, silver nanoparticles (Ag NPs) were incorporated into biodegradable polymers that are chitosan, gelatin and both polymers via chemical reduction method in solvent in order to produce Ag BNCs. Silver nitrate and sodium borohydride were employed as a metal precursor and reducing agent respectively. On the other hand, chitosan and gelatin were added as a polymeric matrix and stabilizer. The antibacterial activity of different sizes of silver nanoparticles was investigated against Gram-positive and Gram-negative bacteria by the disk diffusion method using Mueller-Hinton Agar. RESULTS: The properties of Ag BNCs were studied as a function of the polymer weight ratio in relation to the use of chitosan and gelatin. The morphology of the Ag BNCs films and the distribution of the Ag NPs were also characterized. The diameters of the Ag NPs were measured and their size is less than 20 nm. The antibacterial trait of silver/chitosan/gelatin bionanocomposites was investigated. The silver ions released from the Ag BNCs and their antibacterial activities were scrutinized. The antibacterial activities of the Ag BNC films were examined against Gram-negative bacteria (E. coli and P. aeruginosa) and Gram-positive (S. aureus and M. luteus) by diffusion method using Muller-Hinton agar. CONCLUSIONS: The antibacterial activity of Ag NPs with size less than 20 nm was demonstrated and showed positive results against Gram-negative and Gram-positive bacteria. The Ag NPs stabilized well in the polymers matrix.  相似文献   

3.
Hydrothermal treatment of nano-structured wood, prepared by precision grinding, with cationic silver was found to give silver nanoparticles (Ag NPs) of 2–40-nm size range embedded in the wood tissue. The size and distribution of Ag NPs depended strongly on the starting silver ion concentration and reaction temperature. Higher temperature tended to give larger size and wider distribution. The obtained Ag NPs were characterized using various methods, including high-resolution transmission electron microscopy, UV–visible spectroscopy, and X-ray diffraction. The antibacterial effect of the product against Escherichia coli was evaluated by static and dynamic culture experiments, revealing that the Ag NPs-loaded nano-wood materials have great promise as antimicrobial agents against E. coli.  相似文献   

4.
Block copolymer-supported Ag Nps (nanoparticles) have either a "cherry"-like or "raspberry"-like morphology [Antonietti, et al., Adv. Mater. 7 (1995) 1000-1005] depending on the amount of silver nitrate loading and the external conditions. Sonication favors silver nitrate and polyethyleneimine diffusion; the nucleation sites are well distributed in the micellar cores, so it is easy to form the cherry-like Ag NP colloids. However, when the amount of silver nitrate is decreased, it is heating that induces the formation of raspberry-like Ag NP colloids. The Ag NP colloids were investigated by transmission electron microscopy to demonstrate the nanosize dimensions and the location of the Ag NPs in the micelles. X-ray diffraction was employed to determine the crystal structure of the Ag NPs. UV-vis spectroscopy was employed for further qualitative characterization of the optical properties of Ag NPs.  相似文献   

5.
A facile, green and efficient approach was applied to synthesize multi‐walled carbon nanotubes (MWNTs) decorated with silver nanoparticles (MWNT‐Ag) for further potential application. Oxidized MWNTs were decorated with silver nanoparticles (Ag NPs) via a method combining ultraviolet irradiation‐induced reduction and conventional silver mirror reaction without any reducing agent. The obtained product was characterized using various methods. X‐ray diffraction proved that the Ag NPs were synthesized successfully. Moreover, Ag NPs with a diameter of 80 nm, attached onto MWNTs, could be clearly observed in field emission scanning electron microscopy images, which also confirmed Ag NPs. Energy‐dispersive spectroscopy and transmission electron microscopy also indicated the presence of Ag NPs. Furthermore, thermogravimetric analysis was used to measure the content of Ag NPs in MWNT‐Ag, the result indicating that the weight content of Ag NPs was up to 31.88%. UV–visible absorption spectroscopy was adopted to evaluate the dispersion property of MWNT‐Ag. The result illustrated that MWNT‐Ag had a good dispersibility and stability in water. Characterization was also carried out through Fourier transform infrared spectroscopy, Raman spectroscopy and dynamic light scattering analysis.  相似文献   

6.
A glucose sensor composed of silver nanoparticles decorated carbon nanotubes (Ag‐NPs/CNTs) prepared by ion implantation is described. Ag‐NPs with size of 2–4 nm are uniformly distributed in the CNTs after ion implantation. This process provides a strong combination between Ag‐NPs and CNTs and can effectively prevent the Ag‐NPs from aggregation. A linear range of 125 µM to 10 mM towards glucose determination was obtained. The Ag‐NPs/CNTs electrode shows minimal interferences from co‐existence species such as uric acid and ascorbic acid and an antibacterial rate of 94 % towards E. coli.  相似文献   

7.
The silver and gold L-methionine capped nanoparticles (Ag and Au @LM NPs) were analyzed as prospective acetylcholinesterase (AChE) inhibitors to test their potential in the treatment of cognitive impairment in depression and Alzheimer's disease. The stability of NPs, and their ability to inhibit AChE were studied by UV-Vis and FTIR spectrophotometry. At the same time, TEM and SEM measurements, DLS, and zeta potential measurements were employed in the structural characterization of NPs. Nearly spherical, negatively charged Ag and Au @LM NPs, with 17 nm and 31 nm in diameter, respectively, showed moderate inhibitory potential toward AChE in the given frame of investigated concentrations. For both NPs IC50 is not reached. Furthermore, the adsorption of enzyme molecules on the surface of Ag and Au @LM NPs was demonstrated. Hence, our assumption is that inhibition of AChE is caused by blockage of the enzyme‘s active site due to the steric hindrance of NPs.  相似文献   

8.
Poly(N,N′‐methylenebisacrylamide–4‐vinylpyridine) (P(MBA‐4VP)) nanowires loaded with silver nanoparticles (Ag NPs) have been fabricated by silver metallogel template copolymerization, and subsequently, silver ions are reduced instead of the template being removed. Ag NPs with a diameter of 5–15 nm were dispersed throughout the core of P(MBA‐4VP) nanowires. The size and distribution of the formed Ag NPs could be finely controlled by reduction time. The pH sensitivity of P(MBA‐4VP) nanowires offers the possibility of Ag NP release from the nanowires under acidic conditions. The photocatalytic performance of the P(MBA‐4VP) nanowires loaded with Ag NPs was evaluated for the degradation of methylene blue (MB) under UV light irradiation. Their rate of degradation is dependent on the content and size of the Ag NPs, as well as the pH values of the MB solution. Moreover, the P(MBA‐4VP) nanowires loaded with Ag NPs exhibited high photostability, and the photocatalytic efficiency reduced by only 1.81 % after being used three times.  相似文献   

9.
We have successfully developed a simple method for preparing silver nanoparticles (Ag NPs) using UV irradiation of AgNO3 in the interlamellar space of a montmorillonite (MMT) without any reducing agent or heat treatment. The properties of Ag/MMT nanocomposites were studied as a function of the UV irradiation period. UV irradiation disintegrated the Ag NPs into smaller size until a relatively stable size and size distribution were achieved. The results from UV–vis spectroscopy show that particles size of Ag NPs decrease with the increase of irradiation period. The crystalline structure of Ag NPs was determined by powder X-ray diffraction (PXRD).  相似文献   

10.
Cellulose/silver nanoparticles (Ag NPs) composites were prepared and their catalytic performance was evaluated. Porous cellulose microspheres, fabricated from NaOH/thiourea aqueous solution by a sol–gel transition processing, were served as supports for Ag NPs synthesis by an eco-friendly hydrothermal method. The regenerated cellulose microspheres were designed as reducing reagent for hydrothermal reduction and also micro-reactors for controlling growth of Ag NPs. The structure and properties of obtained composite microspheres were characterized by Optical microscopy, UV–visible spectroscopy, WXRD, SEM, TEM and TG. The results indicated that Ag NPs were integrated successfully and dispersed uniformly in the cellulose matrix. Their size (8.3–18.6?nm), size distribution (3.4–7.7?nm), and content (1.1–4.9?wt%) were tunable by tailoring of the initial concentration of AgNO3. Moreover, the shape, integrity and thermal stability were firmly preserved for the obtained composite microspheres. The catalytic performance of the as-prepared cellulose/Ag composite microspheres was examined through a model reaction of 4-nitrophenol reduction in the presence of NaBH4. The composites microspheres exhibited good catalytic activity, which is much high than that of hydrogel/Ag NPs composites and comparable with polymer core–shell particles loading Ag NPs.  相似文献   

11.
In this study, a rapid flow injection-flame atomic absorption spectrometry for cyanide detection was developed. Different AgX (where X is Cl(-), Br(-), I(-) and N(3)(-)) solid-phase reagents (SPR) were tested for indirect determination of cyanide. In a single-line FIA system, the cyanide was allowed to react with AgX SPR, which in turn changed Ag ions in AgX to silver cyanide complexes in a sodium hydroxide carrier stream. The eluent containing the analyte as silver cyanide complexes was measured by FAAS. The calibration curve was linear up to 30 mg l(-1) with a detection limit of 0.05 mg l(-1) for cyanides. The sampling rate and the relative standard deviation were <1.09% and >200 h(-1), respectively. The method was applied to the determination of cyanide in electroplating wastewater.  相似文献   

12.
Present study used ecofriendly, cost efficient and easy method for synthesis of silver nanoparticles (Ag NPs) at the room temperature by Thymus Kotschyanus extract as reducing and capping agent. Various analytical technique including UV–Vis absorption spectroscopy determined presence of Ag NPs in the solution, the functional groups of Thymus Kotschyanus extract in the reduction and capping process of Ag NPs are approved by FT‐IR, crystallinity with the fcc plane approved from the X‐ray diffraction (XRD) pattern, energy dispersive spectroscopy (EDS) determined existence of elements in the sample, surface morphology, diverse shapes and size of present Ag NPs were showed by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). Beginning and end destroy temperature of present silver nanoparticles were determined by thermal gravimetric spectroscopy (TGA). In addition, antibacterial, antioxidant and cytotoxicity properties of Ag NPs were studied. Agar disk and agar well diffusion are the methods to determined antibacterial properties of synthesized Ag NPs. Also MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) were recognized by macro broth dilution assay. DPPH free radical scavenging assay was used for antioxidant property and compare to butylated hydroxytoluene (BHT) as standard antioxidant that showed high antioxidant activity more than BHT. Synthesized Ag NPs have great cell viability in a dose depended manner and demonstrate that this method for synthesis silver nanoparticles provided nontoxic. The average diameter of synthesized Ag NPs was about 50–60 nm.  相似文献   

13.
Recently, researchers have investigated the therapeutical properties of metal nanoparticles especially silver nanoparticles in vitro and in vivo conditions. The aim of the experiment was green synthesis and chemical characterization of silver nanoparticles from aqueous extract of Pistacia atlantica leaf (Ag NPs) and evaluation of their cytotoxicity, antioxidant, and antibacterial effects under in vitro condition. Ag NPs were spherical with a size range of 40-60 nm and characterized using various analysis techniques including UV–Vis absorption spectroscopy to determine the presence of Ag NP in the solution. We studied functional groups of Pistacia atlantica extract in the reduction and capping process of Ag NP by FT-IR, crystallinity and FCC planes by XRD pattern, elemental analysis of the sample by EDS, and surface morphology, shapes, and size of Ag NPs by SEM, AFM, and TEM. Destroy initiation and termination temperatures of the Ag NPs were determined by TGA. DPPH free radical scavenging test was done to evaluate the antioxidant potentials, which indicated similar antioxidant potentials for Ag NPs and butylated hydroxytoluene. The synthesized Ag NPs had great cell viability dose-dependently and indicated this method was nontoxic. Agar diffusion tests were done to determine the antibacterial characteristic. Ag NPs revealed similar antibacterial property to the standard antibiotic. Also, Ag NPs prevented the growth of all bacteria at 1-7 μg/ml concentrations and removed them at 3-15 μg/ml concentrations. Finally, synthesized Ag NPs revealed non-cytotoxicity, antioxidant and antibacterial activities in a dose-depended manner.  相似文献   

14.
Semiconductor photocatalysis is considered to be one of the most promising technologies to solve the worldwide environmental and energy issues. In recent years, silver halide (AgX)-based photocatalytic materials have received increasing research attention owing to its excellent visible light-driven photocatalytic performances in the applications of organic pollutant degradation, H2/O2 generation, and disinfection. AgX-based materials used in photocatalytic fields can be classified into three categories: AgX (Ag/AgX), AgX composites, and supported AgX materials. For the AgX (Ag/AgX) photocatalysts, it has been widely accepted that the final photocatalytic performances of photocatalysts are severely dependent on their morphological structures as well as exposed crystal facets. As a result, considerable efforts have been devoted to fabricating different morphological AgX photocatalysts as well as exploring the relationship between the morphological structures and photocatalytic performances. In this review, we mainly introduce the recent developments made in fabricating morphology and facet-controllable AgX (Ag/AgX) photocatalytic materials. Moreover, this review also deals with the photocatalytic mechanism and applications of AgX (Ag/AgX) and supported AgX materials.  相似文献   

15.
Fluorescence microscopy and electrochemistry were employed to examine capping agent dynamics in silver nanoparticles capped with DNA intercalated with ethidium bromide, a fluorescent molecule. The capped NPs were studied first electrochemically, demonstrating that the intercalation of the capping agent promotes oxidation of the silver core, occurring at 0.50 V (vs. Ag, compared with 1.15 V for Ag NPs capped in DNA alone). Second, fluorescence electrochemical microscopy revealed that the electron transfer from the nanoparticles is gated by the capping agent, allowing dynamic insights unobservable using electrochemistry alone.  相似文献   

16.
李丹  吴倩  刘莉  王素青  王林同 《化学通报》2015,78(11):1057-1060
在烷基胺/油酸/水混合体系中制备出表面包裹的亲油性纳米银颗粒,体系中的烷基胺作为络合剂和稳定剂起到使Ag离子水溶液与油酸互溶的作用,在还原过程中均匀释放出Ag离子,使Ag表面被油酸包裹具有亲油性。在相同反应条件下,分别以环己胺、正丁胺、三乙胺作为络合剂,考察了不同结构的胺对纳米Ag的形成过程以及对纳米Ag的表面性质和形貌的影响,并考察了所得纳米Ag颗粒的热稳定性。结果表明,相同反应条件下,正丁胺和三乙胺比环己胺更适于作为络合剂和稳定剂来制备油酸包裹的亲油性纳米Ag,所制备的纳米Ag颗粒在烷烃等中具有较好的热稳定性。  相似文献   

17.
Silver nanoparticles (Ag NPs) stabilized by a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM), have been synthesized by the reduction of silver ions with NaBH(4) in aqueous solutions. The obtained Ag NPs are very stable at room temperature due to the extended coil conformation of the PNIPAM chain at temperatures below its volume phase transition temperature ( approximately 32 degrees C). At higher temperatures (such as 45 degrees C) above the phase transition of PNIPAM, only minute aggregation between Ag NPs was observed, showing that the collapsed PNIPAM chains still retain the ability to stabilize Ag NPs. The PNIPAM-stabilized Ag NPs were then characterized as a function of the thermal phase transition of PNIPAM by UV-vis spectroscopy, dynamic light scattering, transmission electron microscopy, and cyclic voltammeter. Consistent results were obtained showing that the phase transition of PNIPAM has some effect on the optical properties of Ag NPs. Switchable electrochemical response of the PNIPAM-stabilized Ag NPs triggered by temperature change was observed.  相似文献   

18.
A novel strategy was designed to prepare Ag cluster-doped TiO(2) nanoparticles (Ag/TiO(2) NPs) without addition of any chemical reducing agent and/or organic additive. A defect-rich TiO(x) species was generated by laser ablation in liquid (LAL) of a Ti target. The silver ions could be reduced and deposited on the surface of TiO(2) NPs through the removal of oxygen vacancies and defects; the TiO(x) species evolved into anatase NPs in a hydrothermal treatment process. The derived Ag/TiO(2) NPs are approximately 25 nm in size, with narrow size distribution. The Ag clusters are highly dispersed inside TiO(2) and less than 3 nm in size. The doped amount can be tuned by changing the concentration of Ag(+) ions. The as-synthesized Ag/TiO(2) NPs display improved photocatalytic efficiency toward pentachlorophenol (PCP) degradation.  相似文献   

19.
Palm pollen (PP) has been widely used in nutrition, pharmaceutical and cosmetic industries. In the present study, we explored the potential of PP in the synthesis of a silver nanoparticle (Ag NP). PP was used as both reducing and stabilizing agent. The Ag/PP nanocomposite was examined by field emission electron microscopy, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet spectroscopy and zeta potential measurement. The biosynthesized NPs showed surface plasmon resonance centered at 425 nm with an average particle size measured to be 23 nm and a zeta potential of ?30.9 mV. Prominent FT-IR signals were obtained and ascribed to phenolic and carbohydrate compounds involved in the formation of the Ag NPs, and proteins which participated in stabilization of the Ag NPs. The biologically synthesized Ag NPs were found to be extremely effective against E. coli (13.8 ± 0.25 mm) with a minimum inhibitory concentration of 20 µg/mL. Thus, such biosynthesized Ag NPs can be used in medicinal applications.  相似文献   

20.
A novel Eu(II) complex with 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate (EHHEHP or PC88A) was synthesized and blended with polystyrene polymer (PS). Both an independent complex and the Eu(II)/PS blend excited by near-UV light produced blue luminescence, arising from the 5d→ 4f transitions of Eu(II). Time-dependent density functional theory (TD-DFT) calculations on electronic structures of the complex molecule indicated that the absorbing and emitting center was associated with the (2)A(d(z(2))) state under the C(2) crystal field. We also synthesized silver nanoparticles (Ag NPs) with an average particle size of 4.48 nm (σ = 0.91 nm) using EHHEHP as a stabilizer. The effects of Ag NPs as a colloidal suspension and an interfacial layer on the luminescence intensity of the blend were investigated as functions of the concentration of Ag NPs and the thickness of the Ag NP layer, respectively. The critical concentration of the colloidal Ag NPs and the critical thickness of the interfacial Ag NP layer were ~355 ppm and ~0.16 μm, respectively. Under critical conditions, the Ag NPs increased the luminescence intensity by 4.4 times as a colloidal suspension in CH(2)Cl(2) and 2.2 times as an interfacial-layer state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号