首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以钛酸丁酯为钛源,氢氟酸为氟源,采用溶剂热法制备了一系列钛基半导体纳米晶,考察了氢氟酸加入量对纳米晶结构演变的影响,并通过光催化产氢、光降解罗丹明B及瞬态光电流响应测试了所得纳米晶的光催化性能。当不加氢氟酸时,所得纳米晶为TiO_2纳米颗粒,主要暴露{101}面。加入少量氢氟酸时,所得纳米晶为主要暴露{001}面的TiO_2纳米片,这是由于氟离子吸附于纳米晶表面,降低{001}面表面能所致。由于{001}面与{101}面间的晶面异质结促进了载流子分离,该样品表现出了最高的光催化性能。继续增加氢氟酸加入量,氟离子开始进入晶格构成新晶相,所得纳米晶的表面与体相均形成TiO_2与TiOF_2混合相,形貌呈现片层堆叠结构,光催化性能下降。当进一步增加氢氟酸加入量后,氟离子全部进入晶格形成大颗粒(NH_4)_(0.3)TiO_(1.1)F_(2.1)。因其具有不适宜光催化反应的能带结构,该物质表现出了较差的光催化活性,但其可作为制备氮、氟掺杂钛基半导体材料的前驱体使用。  相似文献   

2.
Anatase TiO2 nanospindles containing 89% exposed {101} facets (TiO2-101) and nanosheets with 77% exposed {001} facets (TiO2-001) were hydrothermally synthesized and used as supports for Pd catalysts. The effects of the TiO2 materials on the catalytic performance of Pd/TiO2-101 and Pd/TiO2-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene. The Pd/TiO2-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield. To understand these effects, the catalysts were characterized by H2 temperature-programmed desorption (H2-TPD), H2 temperatureprogrammed reduction (H2-TPR), transmission electron microscopy (TEM), pulse CO chemisorption, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The TEM and CO chemisorption results confirmed that Pd nanoparticles (NPs) on the TiO2-101 support had a smaller average particle size (1.53 nm) and a higher dispersion (15.95%) than those on the TiO2-001 support (average particle size of 4.36 nm and dispersion of 9.06%). The smaller particle size and higher dispersion of Pd on the Pd/TiO2-101 catalyst provided more reaction active sites, which contributed to the improved catalytic activity of this supported catalyst.  相似文献   

3.
以SO42-、F-、Cl-和PO43-作为阴离子来研究其对水热合成TiO2(分别记为TiO2-S、TiO2-F、TiO2-Cl和TiO2-P)晶体的影响,并考察了其光催化性能.SEM显示TiO2-S、TiO2-F、TiO2-Cl和TiO2-P分别呈粒子、十面体、刺球和不规则块状.XRD图谱表明TiO2-S和TiO2-F为锐钛矿晶型,TiO2-Cl为金红石晶型,而TiO2-P为锐钛矿、金红石和板钛矿混合晶型,这一结论也被紫外-可见漫反射实验所证实.XPS能谱表明这4种TiO2纳米材料都受到了各自阴离子掺杂的影响,光催化试验显示:它们的光催化活性顺序为: TiO2-F>TiO2-S>TiO2-Cl>TiO2-P,这表明锐钛矿的光催化活性要大于金红石和板钛矿,且具有{001}面,掺杂了F的锐钛矿光催化活性更强.  相似文献   

4.
Photocatalytic oxidation is a promising technology for governing emission of environmental pollutants and managing energy crisis. Typically, the photocatalytic performance of photocatalysts is highly dependent on the type of exposed crystal surfaces. As a semiconductor oxide photocatalyst, the different exposed crystal surfaces of bismuth oxyiodide (BiOI) exhibit different photocatalytic oxidation performances. In this study, we chose BiOI as the model material and provided a novel method to improve the photocatalytic oxidation performance by regulating the main exposed crystal facets. Using boron nitride (BN) nanosheets as the templates, two-dimensional/two-dimensional (2D/2D) BiOI/BN nanocompounds were fabricated via an in situ growth method. Owing to the electrostatic interaction, the positively charged BiOI {001} facets prefer to contact the negatively charged BN {001} facet, thus inducing the exposure of BiOI {110} facets. This was identified via X-ray diffraction and transmission electron microscopy analyses. Compared with BiOI {001} facets, there were more lattice oxygen atoms in the BiOI {110} facets. Thus, the exposure of BiOI {110} facets would promote more surface lattice oxygen atoms exposed on the surface of BiOI, which was confirmed by X-ray photoelectron spectroscopy and density functional theory calculations. To evaluate the photocatalytic oxidation performance of BiOI/BN, the photocatalytic NO oxidation reaction was tested under visible light irradiation (λ > 420 nm). Among all the nanocompounds, the BiOI/BN-1.0:1.4 nanocompound exhibited the best NO oxidation ratio of 44.2%, which was almost 30 times higher than that of pristine BiOI (1.4%). The enhanced photocatalytic activity could be attributed to the following two aspects. One, the successful combination of BN effectively promoted the separation of photogenerated carriers, which was identified by steady-state and time-resolved fluorescence spectra, transient photocurrent responses, and electrochemical impedance spectra. Two, benefiting from the introduction of BN nanosheets, BiOI tends to mainly expose the oxygen-rich {110} facets. As a result, the content of O on the BiOI surface increased from 38.3% to 46.6%. Thus, NO preferred to adsorb on the {110} facets of BiOI nanosheets, which was confirmed by theoretical and experimental results. More importantly, the adsorbed NO spontaneously combined with the lattice oxygen atom of the BiOI (110) surface to form nitrogen dioxide (NO2). These findings can provide a novel strategy to tune exposed oxygen-rich facets by constructing 2D/2D photocatalysts for ensuring efficient photocatalytic oxidation performance.   相似文献   

5.
苏娟  陈接胜 《应用化学》2018,35(9):1126-1132
二氧化钛(TiO2)多孔材料由于具有优异的物理化学性质,在催化、能源、传感等领域展现了重要的研究价值和应用潜力。 TiO2的多孔结构特别在一些涉及异相反应的应用(如异相催化、气敏等)中具有重要的优势,如丰富的传质通道和表面活性位点、可调变的孔尺寸等。 目前,多孔TiO2功能材料的开发和优化研究正在不断推进其工业化应用的进程。 本文围绕多孔TiO2的几个优势应用领域(光催化、光生电子存储和气敏)的研究进展,从结构和缺陷设计出发介绍和讨论性能调控策略。 本文还特别介绍了本课题组通过光诱导合成法开发的一系列多孔TiO2基功能材料,并对相关性能研究领域的关键问题进行了分析和展望。  相似文献   

6.
为实现低温(200-250℃) NH_3-SCR烟气脱硝,开发出了一种高分散暴露CeO_2不同晶面的VO_x-MnO_x/CeO_2低温脱硝催化剂。脱硝性能评价实验结果表明,暴露{110}晶面的VO_x-MnO_x/CeO_2-R催化剂在很宽的温度范围内(220-330℃)都保持了95%的脱硝效率。原位漫反射红外分析结果可知,暴露{110}晶面的VO_x-MnO_x/CeO_2-R催化剂表面更易发生NH_3和NO吸附,进而提高NO的转化效率。气态NH_3在VO_x-MnO_x/CeO_2-R催化剂上吸附生成NH_3(L)和NH_4~+(B),该中间体与NO吸附的中间体桥联硝酸盐和双齿硝酸盐反应生成N_2和H_2O,并遵循Langmuir-Hinshelwood机理。  相似文献   

7.
Controllable growth of anatase TiO2 crystals with exposed high reactive crystal facets has aroused great attention in the fields of science and technology due to their unique structure-dependent properties. Recently, much effort has been paid to synthesize anatase TiO2 crystals with exposed high reactive {001} facets. Herein, we review the recent progress in synthesizing {001} facets dominated anatase TiO2 crystals with different morphologies by various synthetic methods. Furthermore, our review is mainly focused on the formation/etching mechanisms of {001} facets dominated anatase TiO2 crystals based on our and other studies. The extensive application potentials of the anatase TiO2 crystals with exposed {001} facets have been summarized in this review such as photocatalysis, photoelectrocatalysis, solar energy conversion, lithium ion battery, and hydrogen generation. Based on the current studies, we give some perspectives on the research topic. We believe that this comprehensive review on anatase TiO2 crystals with high reactive {001} facets can further promote the relative research in this field.  相似文献   

8.
采用SBA-15硬模板复制技术合成出三维有序纳米线阵列结构的In2O3, 通过离心分离获得了2个尺寸不同的块状颗粒样品. 利用XRD、 SEM和紫外-可见光谱对样品的晶体结构、 晶粒尺寸、 形貌及带隙宽度进行了分析. 结果表明, 2个样品具有相同的纳米微结构, 均为由晶粒尺寸约12 nm的近球形In2O3晶粒规则有序排列生长而成的三维纳米线阵列结构, 纳米线的直径约为12 nm, 间距约为2 nm, 且块状尺寸较大样品的带隙宽度略大. In2O3样品对乙醇气体的气敏性能测试结果显示, 当乙醇气体在空气中的体积分数为100×10-6, 温度为320 ℃时, A样品的灵敏度达到50. 6, 优于尺寸较小的B样品. 通过对比研究发现该纳米结构样品的气敏性能明显优于同级别纳米颗粒和介孔结构材料, 纳米材料的气敏性能随纳米结构形态有序度的增加而提高.  相似文献   

9.
Well-faceted nanocrystals of anatase TiO(2) with specific reactive facets have attracted extraordinary research interest due to their many intrinsic shape-dependent properties. In this work, hierarchical TiO(2) microspheres consisting of anatase nanosheets or decahedrons were synthesized by means of a facile hydrothermal technique; meanwhile, the percentage of {001} facets can be tuned from 82 to 45%. Importantly, by investigating the photo-oxidation reactions for ˙OH radical generation and photoreduction reactions for hydrogen evolution, the TiO(2) microspheres consisting of nano-decahedrons with 45% {001} facets show superior photoreactivity (more than 4.8-times) compared to the nanosheets with 82% {001} facets. By analyzing the results of scanning electron microscopy (SEM), photoluminescence (PL) and first-principles density functional theory (DFT) calculations, a model of charge separation between the well-formed {001} and {101} facets is proposed, and the enhanced photocatalytic efficiency is largely attributed to the efficient separation of photogenerated charges among the crystal facets co-exposed.  相似文献   

10.
AgBr nanoplates with exposed {111} facets have been synthesized in high yield by a facile precipitation reaction, and the as-prepared nanoplates exhibited greatly enhanced photocatalytic properties for the degradation of organic pollutants, which may be primarily ascribed to the relatively higher surface energy of {111} facets.  相似文献   

11.
采用化学浴(CBD)法在TiO2薄膜表面制备结晶性Sb2S3膜层, 获得了TiO2/Sb2S3平板异质结, 并结合聚[2,6-{4,4-双-(2-乙基己基)-4H-环戊并[2,1-b;3,4-b']-二噻吩}-交替-4,7-(2,1,3-苯并噻二唑)](PCPDTBT)空穴传输层和MoO3电极界面修饰层, 制备了FTO/TiO2/Sb2S3/PCPDTBT/MoO3/Au平板结构太阳能电池, 研究了CBD方法中热退火气氛对Sb2S3薄膜的组成、 结构及光伏性能的影响. 结果表明, 在N2气氛下退火时, 所得的Sb2S3膜层不致密且含有Sb2O3杂相, 电池效率仅为0.90%; 而在N2-S气氛下退火时, 硫会与杂相Sb2O3发生反应生成Sb2S3, 进而得到纯净、 致密、 平整的结晶Sb2S3膜层. 在平板结构太阳能电池中, 光生空穴对电池光电流的产生有明显的贡献; 随着Sb2O3杂相的消除, Sb2S3薄膜中载流子的复合减少且传输速率增大, 使太阳能电池器件中电子与空穴的收集效率和短路电流显著提高, 电池效率提高了1.34倍, 达到2.04%.  相似文献   

12.
胡瑞金  王兢  朱慧超 《物理化学学报》2015,31(10):1997-2004
采用静电纺丝的方法制备了SnO2纳米纤维,并分别用PdO、Au、CdO对该纳米纤维材料进行表面修饰.用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱(EDX)、X射线光电子能谱(XPS)分析、Brunauer-Emmett-Teller (BET)比表面积测试对材料进行表征.修饰前后, SnO2纳米纤维都是由约15 nm的纳米颗粒构成的直径约为200 nm的多级结构材料.采用静态测试系统对纯SnO2及不同物质修饰的SnO2的气敏特性进行测试,结果表明,未修饰的SnO2纳米纤维气敏元件对甲醛具有较好的响应.修饰后的SnO2材料的气敏特性都有明显的改善. CdO修饰的SnO2气敏元件对甲醛的响应值最高,且响应恢复时间短,选择性好. Au修饰的SnO2气敏元件对甲醛响应的最佳工作温度从300 ℃降到了200 ℃.经PdO修饰后, SnO2纳米纤维对甲苯的响应值变得最高.初步分析了经过修饰的SnO2气敏材料的敏感机理.  相似文献   

13.
Anatase TiO(2) microspheres with controlled surface morphologies and exposed crystal facets were directly synthesized on metal titanium foil substrates by means of a facile, one-pot hydrothermal method without use of any templating reagent. The obtained products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelecron spectroscopy (XPS), and the focused ion beam (FIB) technique. The sizes of the resultant microspheres ranged from 1.1 to 2.1 μm. The transformation of anatase TiO(2) microspheres with exposed {001} facets surface to nanosheets surface with {101} facets was achieved by simply controlling the hydrothermal reaction time. The anatase TiO(2) microspheres with exposed square-shaped plane {001} facets were obtained by controlling the reaction time at 1 h. The prolonged reaction time transforms the anatase TiO(2) microspheres with exposed square-shaped plane {001} facets to eroded {001} facets then to a nanosheet surface with exposed {101} facets. With hydrothermal synthesis, the surface morphological structure and crystal facets formation are highly dependent on dissolution/deposition processes, which can be strongly influenced by attributes, such as pH of the reaction media, the total concentration of dissolved and suspended titanium species, and the concentration of fluoride in the reaction solution. The changes of these attributes during the hydrothermal process were therefore measured and used to illustrate the morphology and crystal-facet transformation processes of anatase TiO(2) microspheres. The surface morphologies and crystal-facet transformations during hydrothermal processes were found to be governed by the compositional changes of the reaction media, driven by dynamically shifted dissolution/deposition equilibria. The photocatalytic activities of the photoanodes made of anatase TiO(2) microspheres were evaluated. The experimental results demonstrated that the photocatalytic activity of anatase TiO(2) microspheres with exposed {001} facets was found to be 1.5 times higher than that of the anatase TiO(2) microspheres with exposed {101} facets.  相似文献   

14.
In this paper,the TiO2 nanotubes were synthesized by hydrothermal method using a 10 mol/L NaOH aqueous solution at 150℃. The structure of prepared materials was characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM). scanning electron microscope(SEM) and Brunauer-Emmett-Teller(BET).The prepared TiO2 nanotubes were used to prepare thick film gas sensors and the gas sensing properties to various gases were tested.Results show the prepared TiO2 nanotube gas sensors responses to ethanol under dry condition at 450℃.This could be attributed to the fact that it had high porous morphology and a higher pore volume,which can promote the diffusion of ethanol deep inside the films and improve the sensor response. Moreover,the gas sensor made with nanotubes exhibit high selective response towards ethanol gas compared with H2,CO,acetone.  相似文献   

15.
A selective etching phenomenon on {001} faceted anatase TiO(2) single crystal surfaces by HF and associated etching mechanism are reported. Density functional theory (DFT) calculations reveal that HF stabilizes the grown {001} facets at low concentrations, but selectively destroys the grown {001} facets at high concentrations.  相似文献   

16.
A morphology evolution of SnO(2) nanoparticles from low-energy facets (i.e., {101} and {110}) to high-energy facets (i.e., {111}) was achieved in a basic environment. In the proposed synthetic method, octahedral SnO(2) nanoparticles enclosed by high-energy {111} facets were successfully synthesized for the first time, and tetramethylammonium hydroxide was found to be crucial for the control of exposed facets. Furthermore, our experiments demonstrated that the SnO(2) nanoparticles with exposed high-energy facets, such as {221} or {111}, exhibited enhanced catalytic activity for the oxidation of CO and enhanced gas-sensing properties due to their high chemical activity, which results from unsaturated coordination of surface atoms, superior to that of low-energy facets. These results effectively demonstrate the significance of research into improving the physical and chemical properties of materials by tailoring exposed facets of nanomaterials.  相似文献   

17.
Hierarchical TiO(2) nanospheres with controlled surface morphologies and dominant {001} facets were directly synthesized from Ti powder by a facile, one-pot, hydrothermal method. The obtained hierarchical TiO(2) nanospheres have a uniform size of 400-500?nm and remarkable 78?% fraction of {001} facets. The influence of the reaction temperature, amount of HF, and reaction time on the morphology and the exposed facets was systematically studied. A possible growth mechanism speculates that Ti powder first dissolves in HF solution, and then flowerlike TiO(2) nanostructures are formed by assembly of TiO(2) nanocrystals. Because of the high concentration of HF in the early stage, these TiO(2) nanostructures were etched, and hollow structures formed on the surface. After the F(-) ions were effectively absorbed on the crystal surfaces, {001} facets appear and grow steadily. At the same time, the {101} facets also grow and meet the {101} facets from adjacent truncated tetragonal pyramids, causing coalescence of these facets and formation of nanospheres with dominant {001} facets. With further extension of the reaction time, single-crystal {001} facets of hierarchical TiO(2) nanospheres are dissolved and TiO(2) nanospheres with dominant {101} facets are obtained. The photocatalytic activities of the hierarchical TiO(2) nanospheres were evaluated and found to be closely related to the exposed {001} facets. Owing to the special hierarchical architecture and high percentage of exposed {001} facets, the TiO(2) nanospheres exhibit much enhanced photocatalytic efficiency (almost fourfold) compared to P25 TiO(2) as a benchmark material. This study provides new insight into crystal-facet engineering of anatase TiO(2) nanostructures with high percentage of {001} facets as well as opportunities for controllable synthesis of 3D hierarchical nanostructures.  相似文献   

18.
Sword‐like anatase TiO2 nanobelts exposed with 78 % clean {100} facets were synthesized and the facet‐dependent photoreactivity of anatase TiO2 was investigated. By quantitative comparison with the reference {001} facets, the {100} facets possessed about ten‐times higher active sites density than that on {001} facets, resulting in higher photoreaction efficiency. After the active sites density normalization, the {100} and {001} facets exhibited distinct wavelength‐dependent photocatalytic performance, attributed to the anisotropic electronic structures in TiO2 crystals.  相似文献   

19.
Concave gold nanoplates are obtained in hexagonal liquid crystal (LLC) made of SDS (sodium dodecyl sulfate)/glycine/HAuCl(4) aqueous solution system where glycine plays the key role. All plates are single-crystals, characterized by {111} facets, with concave centers of regular hexagonal or triangular shapes, and with better electrocatalytic activity than gold nanoplates.  相似文献   

20.
利用密度泛函理论研究了气体分子(NH3, H2O, H2S, NO2)吸附在二维M3(HIB)2(M=Ni, Cu; HIB为六亚氨基苯)薄膜上体系的几何结构和电子结构的变化. 结果表明, 2种薄膜对气体分子的响应不同. 其中NH3, H2O和H2S在M3(HIB)2薄膜表面的吸附较弱, 主要与薄膜的亚氨基形成氢键, 吸附能均小于-0.36 eV, 吸附对体系电子性质的影响很小. 但是 NO2分子在薄膜表面形成化学吸附, 吸附能在-0.65~-1.72 eV范围内. 吸附NO2分子使其电子结构发生明显改变, 如Cu3(HIB)2在费米能级处打开带隙, 由金属性质转变为半导体性质. 这是由于NO2分子的pz轨道与金属原子$d_{z}^{2}$ 轨道发生了强烈的轨道杂化. 此外, 研究发现高浓度的NO2分子吸附能够使Ni3(HIB)2薄膜由非磁性变为磁性体系, 由普通金属性质变为半金属性质; 而高浓度的NO2分子使Cu3(HIB)2薄膜由金属性质变为半导体性质, 薄膜电导率降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号