首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chiral ligands, 4,4′-bis{(1S,2R,4S)-(−)-bornyloxy}-2,2′-bipyridine, (1S,2R,4S)-1, and 4,4′-bis{(1R,2S,4R)-(+)-bornyloxy}-2,2′-bipyridine, (1R,2S,4R)-1, have been prepared and characterized by spectroscopic techniques and, for (1S,2R,4S)-1, by single crystal X-ray diffraction. Despite the use of enantiomerically pure ligands, the formation of the complexes [Fe((1S,2R,4S)-1)3]2+, [Ru((1S,2R,4S)-1)3]2+, [Ru((1S,2R,4S)-1)(bpy)2]2+ and [Ru((1R,2S,4R)-1)(bpy)2]2+ proceeds without preference for either the Δ or Λ-diastereoisomers.  相似文献   

2.
合成了2,3-二甲基-1,4,8,9-四氮三联苯(dmtatp)和2,3-二苯基-1,4,8,9-四氮三联苯(dptatp)两种新配体及它们与2,2′-联吡啶和钌(Ⅱ)的混配物[Ru(bpy)2dmtatp]2+(1)和[Ru(bpy)2dptatp]2+(2),用电子吸收光谱、稳态荧光、粘度测定和圆二色谱研究了配合物与小牛胸腺DNA的相互作用。结合我们以前对配合物[Ru(bpy)2tatp]2+(3)(tatp为1,4,8,9-四氮三联苯)与小牛胸腺DNA的作用研究,得出配合物与DNA的键合强度顺序为:[Ru(bpy)2tatp]2+>[Ru(bpy)2dptatp]2+>[Ru(bpy)2dmtatp]2+,这与插入配体的位阻效应的减少趋势相一致。同时,还测定了配合物与DNA的键合常数。  相似文献   

3.
The reactions of a wide range of transition-metal carbonyls with anhydrous HF are described. In particular, Ru3(CO)12, Os3(CO)12 and Ir4(CO)12 give the solution stable [Ru3(CO)12H]+, [Ru(CO)5H]+, [Os3(CO)12H]+, [Os(CO)5H]+ and [Ir4(CO)12H2]2+ respectively, which have been characterised by a combination of 1H and 13C NMR spectroscopy.  相似文献   

4.
<正>Electrochemical assembly of[Ru(bpy)_2dppz]~(2+){bpy=2,2'-bipyridine,dppz=dipyrido[3,2-a:2',3'-c]phenazine} on an ITO electrode in the presence of guanine and photoelectrochemical properties of the assembled layer were investigated.It has been found that[Ru(bpy)_2dppz]~(3+/2+) can be assembled onto the ITO electrode by the method of repetitive voltammetric sweeping,and the assembly is enhanced by guanine.The peak currents of prewaves increase linearly up to a guanine concentration of 0.25 mmol/L.More importantly,upon illumination with 470 nm light source and at an applied potential of 0.2 V,cathodic current for the fabricated layer on the ITO electrode indicate a linear enhancement with the rise of guanine concentration.Meanwhile,[Ru(bpy)_2dppz]~(2+) can be served as an excellent mediator to prompt the oxidation of guanine,and the mediated peak current increases linearly with added guanine concentration from 0.01 to 0.25 mmol/L.In addition,the assembly mechanism of[Ru(bpy)_2dppz]~(2+) on the ITO electrode associated with the oxidation of guanine and the assistance of light irradiation were discussed.  相似文献   

5.
The rate constants of electronic energy transfer from the lowest excited state of Ru(bpy)2(L)2+ or Ru(bpy)(L)22+ 10 Ru(L)32+ (b  相似文献   

6.
The rapid and reliable measurement of hydrogen peroxide (H2O2) is imperative for many areas of technology, including pharmaceutical, clinical, food industry and environmental applications. In this work, a novel multifunctional complex, [Ru(bpy)2(luminol-bpy)](PF6)2 (bpy: 2,20'-bipyridine), was designed and synthesized by incorporating a Ru(II) complex with a luminal group. In the presence of horseradish peroxidase (HRP), reaction of [Ru(bpy)2(luminol-bpy)]2+ with H2O2 can be monitored by three sensing channels including photoluminescence (PL), chemiluminiscence (CL) and eletrochemiluminiscence (ECL). The quantitative assays for H2O2 in aqueous solutions using [Ru(bpy)2(Luminalbpy)]( PF6)2 as a probe were established with PL, ECL and CL signal output modes, respectively.  相似文献   

7.
The photophysics of three complexes of the form Ru(bpy)3−(pypm)2+ (where bpy2,2′-bipyridine, pypm 2-(2′-pyridyl)pyrimidine and P=1, 2 or 3) was examined in H2O, propylene carbonate, CH3CN and 4:1 (v/v) C2H5OH---CH3OH; comparison was made with the well-known photophysical behavior of Ru(bpy)32+. The lifetimes of the luminescent metal-to-ligand charge transfer (MLCT) excited states were determined as a function of temperature (between −103 and 90 °C, depending on the solvent), from which were extracted the rate constants for radiative and non-radiative decay and ΔE, the energy gap between the MLCT and metal-centered (MC) excited states. The results indicate that *Ru(bpy)2(pypm)2+ decays via a higher lying MLCT state, whereas *Ru(pypm)32+ and *Ru(pypm)2(bpy)2+ decay predominantly via the MC state.  相似文献   

8.
A series of rhenium complexes [fac-Re(bpy)(CO)3L][SbF6] (bpy = 2,2′-bipyridine, L = P(nBu)3, PEt3, PPh3, P(OMe)Ph2, P(OiPr)3, P(OEt)3, P(OMe)3, P(OPh)3) has been prepared and characterized by the IR, UV-vis, 1H NMR, 31P NMR, X-ray photoelectron spectroscopy and electrochemical techniques. Variations in the electronic properties, i.e. CO stretching, metal-to-ligand charge transfer transition, and 31P NMR chemical shifts were interpreted on the basis of the electron-acceptor strength of L. However, the redox potential corresponding to [Re(bpy)(CO)3L]+/[Re(bpy)(CO)3L]showed ‘V-character type’ changes after the increase in the electron-acceptor strength of L. Variation of the P(2p) binding energy of the phosphorus atom indicated that the electronic structure of the coordinated phosphorus atom was strongly influenced by the electronic properties of the directly attached substituents.  相似文献   

9.
The title compounds react with unidentate ligands, L, containing either phosphorus or arsenic donor atoms to yield the corresponding compounds of the type Ru(η5---C5Me4Et)(CO)LX; with didentate phosphorus donor ligands the major species formed is the bridged complex {Ru(η5---C5Me4Et)(CO)X}2{Ph2P(CH2)nPPh 2} n = 1, X = Br; n = 2, X = Cl). In contrast, unidentate ligands containing nitrogen donor atoms such as pyridine did not react with Ru(η5---C5Me4Et)(CO)2Cl although reaction with 1,10-phenanthroline or diethylenetriamine yielded the ionic products [Ru(η5---C5Me4Et)(CO)L]+Cl (L = phen or (NH2CH2CH2)2NH). Reaction of Ru(η5---C5Me4Et)(CO)2Br with AgOAc yielded the corresponding acetato complex Ru(η5---C5Me4Et)(CO)20Ac. Ru(η5--- C5Me4Et)(CO)2X reacts with AgY (Y = BF4 or PF6) in either acetone or dichloromethane to give the useful solvent intermediates [Ru(η5---C5Me4Et)(CO)2(solvent)]+Y, which readily react with ligands L to yield ionic derivatives of the type [Ru(η5---C5Me4Et)(CO)2L]+Y (where L = CO, NCMe, py, C2H4 or MeO2CCCCO2Me).  相似文献   

10.
A light-driven system consisting of tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) as the photosensitizer, semicarbazide as the electron donor and molecular oxygen as the electron acceptor has been employed for hydrogen peroxide production. The efficiency of this photosystem markedly depends on pH: while the peroxide yield is almost negligible at acid, neutral or slightly alkaline pH, it reaches significant values at high hydroxide concentrations, the initial rate of H2O2 formation drastically increasing from pH 12 to pH 14. In 1 M NaOH solutions containing Ru(bpy)32+ and semicarbazide at optimum concentrations, the number of catalytic cycles (or turnover number) undergone by the ruthenium complex over the complete course of the photochemical reaction is as high as 1.1 × 104.

Spectrofluorometric and laser flash photolysis techniques were used to study the primary photochemical reactions involving the excited state of the ruthenium complex as well as the photochemically generated species Ru(bpy)33+ and Ru(bpy)3+. It is proposed that at pH 14 a sequence of reactions leading to O2 photoreduction by electrons from semicarbazide takes place, with the concomitant formation of H2O2; the excited state of Ru(bpy)32+ appears to react via oxidative quenching by oxygen rather than via reductive quenching by semicarbazide. At neutral pH, in contrast, there is no H2O2 formation owing to the fact that semicarbazide is unable to reduce (Ru(bpy)33+ to Ru(bpy)32+, although the photoexcited ruthenium complex is quenched equally by oxygen.  相似文献   


11.
Treatment of [Ru2(CO)4(MeCN)6][BF4]2 or [Ru2(CO)4(μ-O2CMe)2(MeCN)2] with uni-negative 1,1-dithiolate anions via potassium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium tert-butylthioxanthate, and ammonium O,O′-diethylthiophosphate gives both monomeric and dimeric products of cis-[Ru(CO)22-(SS))2] ((SS)=Me2NCS2 (1), Et2NCS2 (2), tBuSCS2 (3), (EtO)2PS2 (4)) and [Ru(CO)(η2-(Me2NCS2))(μ,η2-Me2NCS2)]2 (5). The lightly stabilized MeCN ligands of [Ru2(CO)4(MeCN)6][BF4]2 are replaced more readily than the bound acetate ligands of [Ru2(CO)4(μ-O2CMe)2(MeCN)2] by thiolates to produce cis-[Ru(CO)22-(SS))2] with less selectivity. Structures 1 and 5 were determined by X-ray crystallography. Although the two chelating dithiolates are cis to each other in 1, the dithiolates are trans to each other in each of the {Ru(CO)(η2-Me2NCS2)2} fragment of 5. The dimeric product 5 can be prepared alternatively from the decarbonylation reaction of 1 with a suitable amount of Me3NO in MeCN. However, the dimer [Ru(CO)(η2-Et2NCS2)(μ,η2-Et2NCS2)]2 (6), prepared from the reaction of 2 with Me3NO, has a structure different from 5. The spectral data of 6 probably indicate that the two chelating dithiolates are cis to each other in one {Ru(CO)(η2-Et2NCS2)2}fragment but trans in the other. Both 5 and 6 react readily at ambient temperature with benzyl isocyanide to yield cis-[Ru(CO)(CNCH2Ph)(η2-(SS))2] ((SS)=Me2NCS2 (7) and Et2NCS2 (8)). A dimerization pathway for cis-[Ru(CO)22-(SS))2] via decabonylation and isomerization is proposed.  相似文献   

12.
The acid–base chemistry of some ruthenium ethyne-1,2-diyl complexes, [{Ru(CO)2(η-C5H4R)}22-CC)] (R=H, Me) has been investigated. Initial protonation of [{Ru(CO)2{η-C5H4R}}22-CC)] gave the unexpected complex cation, crystallised as the BF4 salt, [{Ru(CO)2(η-C5H4R}}33-CC)][BF4] (R=Me structurally characterised). This synthesis proved to be unreliable but subsequent, careful protonation experiments gave excellent yields of the protonated ethyne-1,2-diyl complexes, [{Ru(CO)2{η-C5H4R)}2212-CCH)](BF4) (R=Me structurally characterised) which could be deprotonated in high yield to return the starting ethyne-1,2-diyl complexes.  相似文献   

13.
Transition metal complex, in its electronic excited state, has intriguing photophysical and photochemical properties that are substantially different from its ground state, Indeed, electronically excited metal complex can be viewed as hot chemical species that is readily synthesized by photo-excitation with UV-visible light. If the energy of excited metal complex can be properly manipulated, it may be possible to devise new catalytic system for converting light to chemical energy. In the context of energy conversion reactions and chemical sensing, it is important for biomolecular reactions at room temperature. Among the photochemical bimolecular reactions, the following three have the widest applications in photocatalysis, and these are (1) bimolecular outer-sphere electron transfer reactions, (2) bimoleculat inner-sphere atom transfer/abstract reactions, and (3) exciplex formation involving electronic excited state. The past of inorganic photochemistry has demonstrated the success of[Ru(bpy)3]2+ as a powerful reagent for light-induced electron transfer reactions. Much of the current photochemistry research focus on coordinative unsaturated metal complexes, that are strongly photoluminescent and readily undergo substrate binding reactions in their excited states. In this lecture, I will review some of the past successful stories of[Ru(bpy)3]2+ and discuss our current research on the luminescent metal-complexes prepared in my laboratory. I will end my lecture by proposing a clue for achieving light-induced multi-electron transfer reactions, which remains a challenge in photochemistry research.  相似文献   

14.
Recently, much attention has been paid to Ru(II) complexes because of their excellent properties of photochemistry, phtophysis. Bis(2,2'-bipyridine)[4-methyl-4'-(6-bromohexyl)-2,2'-bipyridine] ruthenium(II) perchlorate has been used as an active material for electrochemiluminescent (ECL) sensor for selective detection of oxalic acid.It is known that ECL efficiency of Ru(phen)32+ is much higher than that of Ru(bpy)32+. In order to make out more efficient ECL sensor, we have designed and synthesized a new Ru(II) complex, Ru(phen)2[phen-NHCO(CH2)4Br](PF6)2.  相似文献   

15.
Pentacarbonyl-rhenate and -manganate react with the cationic complexes [cpMo(CO)2(diene)]+, [cpMo(CO)2(cyclopentadiene]+, [cpMo(CO)2(cyclohexadiene)]+, [cpMo(CO)2(trimethylenemethane]+, [(OC)3Mo(η7-C7H7)]+, [cp(OC)-(Ph3P)Mo(alkyne)]+ to give the corresponding heteronuclear hydrocarbon-bridged complexes.  相似文献   

16.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

17.
The bis(μ3-ethylidyne) tricobalt cluster [(CpCo)33-CCH3)2] (1b) is protonated by trifluoroacetic acid to give the dicobalt edge-protonated cation [H(CpCo)33-CCH3)2]+ [lb + H]+. Protonation of the μ3-ethylidyne tetracobalt cluster hydride [H(CpCo)43-CCH3)] (3) takes place in two consecutive steps. At low temperature [H2(CpCo)43-CCH3)]+ [3 + H]+ is formed first, and is then slowly converted into [H3(CpCo)43-CCH3)]2+ [3 + 2H]2+ by an excess of acid. As judged by the 1H NMR data and the crystal structure of [3 + X]+[(CF3COO)2X] (X = H or D) the endo hydrogens in [3 + H]+ and [3 + 2H]2+ occupy μ3-(Co3) face capping hydridic positions. The cations [1b + H]+ and [3 + H]+ show hydride fluxionality in solution, which in the case of [3 + H]+ can be frozen out on the NMR timescale at low temperature (ΔG (203 K) = 40.8 kJ/mol). The structure of [3 + X]+ [(CF3COO)2X] (X = H or D) was determined by X-ray crystallography. One of the hydrides/deuterides is located on the crystallographic mirror plane, capping a tricobalt face of the cluster cation. The other endo hydrogen atom is believed to be disordered between the other two μ3-(Co3) sites, which are related by space group symmetry. Deuteronation of 3 shows a strong normal kinetic deuterium isotope effect. From the temperature independence of the 1H NMR spectrum of [3 + 2D]2+ a non-fluxional solution structure can be inferred. In all the systems studied, hydridic (μ2- or μ3-) sites are thermodynamically preferred to possible isomeric agostic CoHC or Co2HC sites for the endo hydrogens. Agostic interactions cannot, however, be ruled out in transient intermediates during the course of the protonations.  相似文献   

18.
The reaction of [(C6H6)RuCl2]2 with 7,8-benzoquinoline and 8-hydroxyquinoline in methanol were performed. The obtained complexes have been studied by IR, UV–VIS, 1H and 13C NMR spectroscopy and X-ray crystallography. In the reaction with 8-hydroxyquinoline the arene ruthenium(II) complex oxidized to Ru(III). The electronic spectra of the obtained compounds have been calculated using the TDDFT method. Magnetic properties of [Ru(C9H6NO)3] · CH3OH complex suggest the antiferromagnetic coupling of the ruthenium centers in the crystal lattice. EPR spectrum of [Ru(C9H6NO)3] · CH3OH compound indicates single isotropic line only characteristic for Ru3+ with spin equal to 1/2.  相似文献   

19.
The reaction of the dimer complex [{Ru(CO)3Cl2}2] with the ligands 4,6-dichloroquinoline-5,8-dione and 6-methoxybenzo[g]quinoline-5,10-dione in ethanol solution led to the neutral mononuclear complexes of general formula [Ru(CO)2Cl22-quinolinedione-N,O)]. The complexes were characterized by elemental analysis, IR and RMN spectroscopy, and the molecular structure of [Ru(CO)2Cl2(6-methoxybenzo[g]quinoline-5,10-dione)] was determined by single-crystal X-ray diffraction. The redox chemistry of ligands and complexes was investigated by cyclic voltammetry, and their potential antitumor activity was also evaluated.  相似文献   

20.
Reaction of [Pt25-C5Me5)2(η-Br)3]3+(Br)3 with C5R5H (R = H,Me) in the presence of AgBF4 gives the first platinocenium dications, [Pt(η5-C5Me5)(η5-C5R5)]2+(BF4 )2. On electrochemical reduction, [pt(η5-C5Me5)2]2+ yields [Pt(η4-C5Me5H)(η2-C5Me5)]+ BF4. kw]Cyclopentadienyl; Metallocenes; Platinum; Electrochemistry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号