首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of combination of noble metals M (Rh, Pd, Ir, Pt) and metal oxide supports S (Al2O3, SiO2, ZrO2, CeO2) on the NO + H2 reaction using planar catalysts with M/S two layered thin films on Si substrate. In this study, NO reduction ability per metal atom were evaluated with a specially designed apparatus employing pulse valves for the injection of reactant molecules onto catalysts and a time-of-flight mass spectrometer to measure multiple transient products: NH3, N2 and N2O simultaneously as well as with an atomic force microscopy to observe the surface area of metal particles. The catalytic performances of Rh and Ir catalysts were hardly affected by a choice of a metal oxide support, while Pd and Pt catalysts showed different catalytic activity and selectivity depending on the metal oxide supports. This assortment is consistent with ability to dissociate NO depending on metals without the effect of any support materials. There, the metals to the left of Rh and Ir on the periodic table favor dissociation of NO and those to the right of Pd and Pt tend to show molecular adsorption of NO. Therefore, the catalytic property of noble metals could be assorted into two groups, i.e. Rh and Ir group whose own property would mainly dominate the catalytic performance, and Pd and Pt group whose interaction with metal oxides supports would clearly contribute to the reaction of NO with H2. NO reduction activity of Pd and Pt was found to be promoted above that of Rh and Ir, provided that Pd and Pt were supported by CeO2 and ZrO2.  相似文献   

2.
Series of bimetallic systems were prepared by replacement reactions and characterized by XRD and XPS. The results suggest that the ad-metals are monolayer dispersed on the surface of sub-metal in Pd(Pt, Cu)/Co(Ni) systems, while in Pd(Pt, Au)/Cu systems surface solid solution is formed. In Ag(Au)/Co(Ni) and Ag/Cu systems no interaction between the metals is observed just as in the simple mixture of the respective crystallites. The outermost electronic configurations, the atomic radius of the metals, and the low-preparation temperature seem to be important factors for the different states of these bimetallic catalysts.  相似文献   

3.
电催化CO2还原反应可以产生HCOOH和CO,目前该反应是将可再生电力转化为化学能存储在燃料中的最有前景的方法之一. SnO2作为将CO2转换为HCOOH和CO的良好催化剂,其反应发生的晶面可以是不同的. 其中(110)面的SnO2非常稳定,易于合成. 通过改变SnO2(110)的Sn:O原子比例,得到了两种典型的SnO2薄膜:完全氧化型(符合化学计量)和部分还原型. 本文研究了不同金属(Fe、Co、Ni、Cu、Ru、Rh、Pd、Ag、Os、Ir、Pt和Au)掺杂的SnO2(110),发现在CO2还原反应中这些材料的催化活性和选择性是不同的. 所有这些变化都可以通过调控(110)表面中Sn:O原子的比例来控制. 结果表明,化学计量型和部分还原型Cu/Ag掺杂的SnO2(110)对CO2还原反应具有不同的选择性. 具体而言,化学计量型的Cu/Ag掺杂的SnO2(110)倾向于产生CO(g),而部分还原型的表面倾向于产生HCOOH(g). 此外,本文还考虑了CO2还原的竞争析氢反应. 其中Ru、Rh、Pd、Os、Ir和Pt掺杂的SnO2(110)催化剂对析氢反应具有较高的活性,其他催化剂对CO2还原反应具有良好的催化作用.  相似文献   

4.
Silver-palladium bimetallic clusters were synthesized on pumice by the reduction of aqueous solution of metal salts with different Pd:Ag ratios. Used as bimetallic catalysts, in hydrogenation reactions, in situations where molecules can undergo several different reactions, they eliminate undesired reactions and maximize the desired ones. To characterize the structure of these bimetallic catalysts and control if the two metallic elements do mix or not to each other to form an alloy, the structure of the Ag-Pd bimetallic clusters was investigated by means of X-ray-absorption fine-structure spectroscopy (XAFS) and anomalous wide angle X-ray scattering (AWAXS) experiments performed at the European Synchrotron Radiation Facility (ESRF) using the GILDA and the BM16 beamlines. A correlation between Ag and Pd was found but not a clear evidence of alloying. Received: 21 December 1998 / Received in final form: 19 March 1999  相似文献   

5.
fcc金属层错能的EAM法计算   总被引:10,自引:0,他引:10       下载免费PDF全文
采用嵌入原子法(EAM)计算了Cu,Ag,Au,Ni,Al,Rh,Ir,Pd,Pt和Pb等10种面心立方(fcc)金属的层错能,除Rh和Ir两种金属外,其他金属的计算结果和实验结果基本一致. 关键词: 面心立方金属 层错能 EAM  相似文献   

6.
Transition metals are often introduced to a catalyst as promoters to improve catalytic performance. In this work, we study the promotion effect of transition metals on Co, the preferred catalytic metal for Fischer–Tropsch synthesis because of its good compromise of activity, selectivity and stability, for ethylene chemisorption using density functional theory (DFT) calculations, aiming to provide some insight into improving the α-olefin selectivity. In order to obtain the general trend of influence on ethylene chemisorption, twelve transition metals (Zr, Mn, Re, Ru, Rh, Ir, Ni, Pd, Pt, Cu, Ag and Au) are calculated. We find that the late transition metals (e.g. Pd and Cu) can decrease ethylene chemisorption energy. These results suggest that the addition of the late transition metals may improve α-olefin selectivity. Electronic structure analyses (both charge density distributions and density of states) are also performed and the understanding of calculated results is presented.  相似文献   

7.
Mössbauer spectra of SiO2-supported bimetallic FeM (M=Ru, Rh, Pd, Ir, and Pt) with FeM=15 arter treatments such as reduction, exposure to CO and passivation in air are described and compared with previous results obtained on 11 FeM/SiO2 catalysts.  相似文献   

8.
The metal-catalyzed reduction of di-oxygen (O2) by hydrogen is at the heart of direct synthesis of hydrogen peroxide (HOOH) and power generation by proton exchange membrane fuel cells. Despite its apparent simplicity, how the reaction proceeds on different metals is not yet well understood. We present a systematic study of O2 reduction on the (111) facets of eight transition metals (Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) based on periodic density functional theory (DFT-GGA) calculations. Analysis of ten surface elementary reaction steps suggests three selectivity regimes as a function of the binding energy of atomic oxygen (BEO), delineated by the opposite demands to catalyze O–O bond scission and O–H bond formation: The dissociative adsorption of O2 prevails on Ni, Rh, Ir, and Cu; the complete reduction to water via associative (peroxyl, peroxide, and aquoxyl) mechanisms prevails on Pd, Pt, and Ag; and HOOH formation prevails on Au. The reducing power of hydrogen is decreased electrochemically by increasing the electrode potential. This hinders the hydrogenation of oxygen species and shifts the optimal selectivity for water to less reactive metals. Our results point to the important role of the intrinsic reactivity of metals in the selectivity of O2 reduction, provide a unified basis for understanding the metal-catalyzed reduction of O2 to H2O and HOOH, and offer useful insights for identifying new catalysts for desired oxygen reduction products.  相似文献   

9.
张建民  马飞  徐可为 《中国物理》2004,13(7):1082-1090
The surface energies for 38 surfaces of fcc metals Cu, Ag, Au, Ni, Pd, Pt, A1, Pb, Rh and Ir have been calculated by using the modified embedded-atom method. The results show that, for Cu, Ag, Ni, A1, Pb and Ir, the average values of the surface energies are very close to the polycrystalline experimental data. For all fcc metals, as predicted, the close-packed (111) surface has the lowest surface energy. The surface energies for the other surfaces increase linearly with increasing angle between the surfaces (hkl) and (111). This can be used to estimate the relative values of the surface energy.  相似文献   

10.
CO2 reduction reaction (CO2RR) has indispensable significance for carbon recycling and renewable energy production. As typical electrochemical catalysts, Au and Ag show relatively high reaction activity and selectivity in CO2RR. In this study, a series of Ag–Au bimetallic catalysts are designed and synthesized through the thermal evaporation method for efficient yet massive production of electrochemical catalysts. The Ag–Au catalysts show significantly enhanced activity and selectivity in CO2RR, which is mainly attributed to the increased grain boundaries with well-dispersed single Ag atoms. After the optimization, Au20Ag10 exhibits the best performance with a CO Faraday efficiency of 89% at −0.9 V (vs the reversible hydrogen electrode) with good stability.  相似文献   

11.
Monometallic Pt and Rh and bimetallic PtRh catalysts with a highly dispersed noble metal weight loading of ca. 1 wt% were produced via the direct deposition of nanoparticles on different SiO2 supports by means of pulsed ultra-violet (248 nm) excimer laser ablation of Pt, Rh bulk metal and PtRh alloy targets. Backscattered electron microscopy (BSE), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were employed to characterize the deposited nanoparticles, which were found to exhibit narrow size distribution centred around 2.5 nm. The catalytic activities for lean NO x reduction of the monometallic and bimetallic catalyst samples were investigated in a flow reactor setup in the temperature range 100–400°C using a test gas mixture representative of oxygen rich diesel engine exhaust gas. For comparison a Rh/SiO2 reference catalyst prepared by a conventional impregnation method was also tested. Further experiments were performed in which PtRh nanoparticles were deposited on a Rh/SiO2 reference catalyst sample to study the possibility for controlled modification of its activity. The catalytic activity measurements revealed that among the samples solely prepared by laser deposition the PtRh–SiO2 nanoparticle catalyst showed the highest activity for NO x reduction at low temperatures 100–300°C. In addition, it could be demonstrated that the initially low NO x reduction activity and the N2 selectivity of the Rh/SiO2 reference catalyst sample for temperatures below 250°C can be enhanced by post laser deposition of PtRh nanoparticles.  相似文献   

12.

Abstract  

Mono metallic (Au, Ag, Pd) and bimetallic (Au–Ag, Ag–Pd, Au–Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au–Ag = 9.2, Ag–Pd = 9.6, Au–Pd = 9.4 nm) are characterized by UV–Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.  相似文献   

13.
本文针对在多种催化反应的重要中间体乙烯,使用(meta)-GGA等级的包含PBE,BEEF-vdW,SCAN以及SCAN+rVV10在内的多种交换关联泛函,系统研究了在过渡金属表面(Ag,Rh和Ir)上乙烯吸附势能面对泛函的依赖关系. 研究发现,对于乙烯在贵金属Ag(111)上的吸附,除了PBE外,BEEF-vdW,SCAN以及SCAN+rVV10均能预测出物理吸附态的存在. 对于乙烯在Rh(111)面的吸附,SCAN和SCAN+rVV10预测在化学吸附位之前存在有物理吸附前驱态,而基于PBE和BEEF-vdW的势能面并没有发现前驱态的存在. 而对于乙烯在Ir(111)上的吸附,BEEF-vdW也能微弱地预测出化学吸附前驱态的存在. 研究结果表明,无论在哪一种金属表面上,四种泛函中SCAN+rVV10给出的吸附能最强,其次是SCAN,最后是PBE或者BEEF-vdW.  相似文献   

14.
The g-shift and the thermal broadening of the ESR linewidth of Gd doped YRh and ScM (M = Ru, Rh, Pd, Ag, Cu) are reported. The results seem to be influenced by non s-band conduction electrons.  相似文献   

15.
ICP—AES法直接测定贵金属粉末中8个贵金属元素   总被引:3,自引:0,他引:3  
本文应用ICP-AES法直接测定贵金属粉末中8个贵金属元素,试验了试样分解方法,测定了介质的影响,元素间的光谱干扰,给了了贵金属粉末试样中8个贵金属元素的测定含量,其结果与其它方法一致性较好,结果满意。  相似文献   

16.
Russian Physics Journal - The results of a search for correlations between the crystal-geometry parameters and structural-phase states in the alloys based on Ag–Me (Me = Co, Rh, Ir, Ni, Pd,...  相似文献   

17.
Fabrication of nanoclusters on a substrate is of great interest in studies of model catalysts. The key factors that govern the growth and distribution of metal on graphene have been studied by scanning tunneling microscopy (STM) based on different behaviors of five transition metals, namely Pt, Rh, Pd, Co, and Au supported on the template of a graphene moiré pattern formed on Ru(0001). Our experimental findings show that Pt and Rh form finely dispersed small clusters located at fcc sites on graphene while Pd and Co form large clusters at similar coverages. These results, coupled with previous findings that Ir forms the best finely dispersed clusters, suggest that both metal–carbon (M–C) bond strength and metal cohesive energies play significant roles in the cluster formation process and that the M–C bond strength is the most important factor that affects the morphology of clusters at the initial stages of growth. Furthermore, experimental results show Au behaves differently and forms a single-layer film on graphene, indicating other factors such as the effect of substrate metals and lattice match should also be considered. In addition, the effect of annealing Rh on graphene has been studied and its high thermal stability is rationalized in terms of a strong interaction between Rh and graphene as well as sintering via Ostwald ripening.  相似文献   

18.
The (001) surface multilayer relaxation results calculated by the modified embedded atom method (MEAM) show that Ni, Al, Rh and Ir (001) surface are ‘anomalous’ outward relaxation, while Cu, Ag, Au, Pd, Pt and Pb (001) surface are inward relaxation. For the inward relaxation metals, the relaxation between the first two layers increase for the 3d, 4d and 5d metals at the same column in the periodic table, successively. The expansion (contraction) between the first two layers at fcc (001) surfaces is accompanied by the decrease (increase) in the electronic density at the lattice of the first two layers. The surface energies results show that the surface energies decrease for all fcc (001) surfaces due to relaxation, whereas the changes not more than 5%.  相似文献   

19.
王伟宇  胡涵  徐君  邓风 《波谱学杂志》2018,35(3):269-279
本文通过多相催化-仲氢诱导超极化(HET-PHIP)核磁共振(NMR)技术研究了Pd-Cu/SiO2双金属催化剂上丙炔选择性加氢反应.首先利用等体积浸渍法和连续浸渍法合成了一系列不同Pd/Cu比例和形貌的Pd-Cu/SiO2双金属催化剂.通过ALTADENA(Adiabatic Longitudinal Transport After Dissociation Engenders Net Alignment)方法发现,催化剂的Pd/Cu比例和形貌均对PHIP的极化效率有较大影响.随着Pd-Cu双金属催化剂中Pd比例的增大,PHIP极化效率降低,同时反应活性增强.在同Pd/Cu比例下,相对于等体积浸渍法,连续浸渍法制备的层叠形貌催化剂具有较弱的极化效率以及较强的催化活性,这是由于催化剂表面暴露出的Pd数量增多,导致催化活性增强;同时单个Pd集簇表面积增大,使得氢原子移动范围扩大,从而造成极化效率降低.  相似文献   

20.
The behavior of ternary and quaternary additions to NiTi shape memory alloys is investigated using a quantum approximate method for the energetics. Ternary additions X to NiTi and quaternary additions to Ni–Ti–Pd, Ni–Ti–Pt, and Ni–Ti–Hf alloys, for X=Au, Pt, Ir, Os, Re, W, Ta,Ag, Pd, Rh, Ru, Tc, Mo, Nb, Zr, Zn, Cu, Co, Fe, Mn, V, Sc, Si, Al and Mg are considered. Bulk properties such as lattice parameter, energy of formation, and bulk modulus of the B2 alloys are studied for variations due to the presence of one or two simultaneous additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号