首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we report the photoinitiated polymerization-induced self-assembly (photo-PISA) of spherical micelles consisting of proapoptotic peptide–polymer amphiphiles. The one-pot synthetic approach yielded micellar nanoparticles at high concentrations and at scale (150 mg mL−1) with tunable peptide loadings up to 48 wt. %. The size of the micellar nanoparticles was tuned by varying the lengths of hydrophobic and hydrophilic building blocks. Critically, the peptide-functionalized nanoparticles imbued the proapoptotic “KLA” peptides (amino acid sequence: KLAKLAKKLAKLAK) with two key properties otherwise not inherent to the sequence: 1) proteolytic resistance compared to the oligopeptide alone; 2) significantly enhanced cell uptake by multivalent display of KLA peptide brushes. The result was demonstrated improved apoptosis efficiency in HeLa cells. These results highlight the potential of photo-PISA in the large-scale synthesis of functional, proteolytically resistant peptide–polymer conjugates for intracellular delivery.  相似文献   

2.
Despite the initial successes of gene delivery applications, they faced on several intrinsic drawbacks including toxicity and immunogenicity. Therefore, alternative gene‐delivery systems derived from recombinant peptides have emerged and is rapidly developing. Human epidermal growth factor receptor‐3 (HER3) shows high activity in tumor resistance to anti‐human epidermal growth factor receptor 2 (HER2) therapies. In this study, an affibody molecule against HER3 is conjugated to a biomimetic peptide RALA (an amphipathic and cationic peptide enriched with arginine) and the ability of the fusion vector for targeting HER3 and afterward delivering specific genes in breast cancer cells is evaluated. The results demonstrate that the biopolymeric platform, which contains an affibody‐conjugated RALA peptide, can effectively condense DNA into nanoparticles and target the overexpressed HER3 receptors in breast cancer cells and transfer specific genes. The use of such a recombinant biopolymer may pave the way for the development of sensitive and effective diagnostic and treatment tool for breast cancer.  相似文献   

3.
The conjugation of biomolecules to magnetic nanoparticles has emerged as promising approach in biomedicine as the treatment of several diseases, such as cancer. In this study, conjugation of bioactive peptide fractions from germinated soybeans to magnetite nanoparticles was achieved. Different fractions of germinated soybean peptides (>10 kDa and 5–10 kDa) were for the first time conjugated to previously coated magnetite nanoparticles (with 3-aminopropyltriethoxysilane (APTES) and sodium citrate) by the Ugi four-component reaction. The crystallinity of the nanoparticles was corroborated by X-ray diffraction, while the particle size was determined by scanning transmission electron microscopy. The analyses were carried out using infrared and ultraviolet–visible spectroscopy, dynamic light scattering, and thermogravimetry, which confirmed the coating and functionalization of the magnetite nanoparticles and conjugation of different peptide fractions on their surfaces. The antioxidant activity of the conjugates was determined by the reducing power and hydroxyl radical scavenging activity. The nanoparticles synthesized represent promising materials, as they have found applications in bionanotechnology for enhanced treatment of diseases, such as cancer, due to a higher antioxidant capacity than that of fractions without conjugation. The highest antioxidant capacity was observed for a >10 kDa peptide fraction conjugated to the magnetite nanoparticles coated with APTES.  相似文献   

4.
Multifunctional gold nanoparticle-peptide complexes for nuclear targeting   总被引:7,自引:0,他引:7  
The ability of peptide-modified gold nanoparticles to target the nucleus of HepG2 cells was explored. Five peptide/nanoparticle complexes were investigated, particles modified with (1) the nuclear localization signal (NLS) from the SV 40 virus; (2) the adenovirus NLS; (3) the adenovirus receptor-mediated endocytosis (RME) peptide; (4) one long peptide containing the adenovirus RME and NLS; and (5) the adenovirus RME and NLS peptides attached to the nanoparticle as separate pieces. Gold nanoparticles were used because they are easy to identify using video-enhanced color differential interference contrast microscopy, and they are excellent scaffolds from which to build multifunctional nuclear targeting vectors. For example, particles modified solely with NLS peptides were not able to target the nucleus of HepG2 cells from outside the plasma membrane, because they either could not enter the cell or were trapped in endosomes. The combination of NLS/RME particles (4) and (5) did reach the nucleus; however, nuclear targeting was more efficient when the two signals were attached to nanoparticles as separate short pieces versus one long peptide. These studies highlight the challenges associated with nuclear targeting and the potential advantages of designing multifunctional nanostructured materials as tools for intracellular diagnostics and therapeutic delivery.  相似文献   

5.
Cell-penetrating peptides (CPPs) have rapidly become a mainstay technology for facilitating the delivery of a wide variety of nanomaterials to cells and tissues. Currently, the library of CPPs to choose from is still limited, with the HIV TAT-derived motif still being the most used. Among the many materials routinely delivered by CPPs, nanoparticles are of particular interest for a plethora of labeling, imaging, sensing, diagnostic, and therapeutic applications. The development of nanoparticle-based technologies for many of these uses will require access to a much larger number of functional peptide motifs that can both facilitate cellular delivery of different types of nanoparticles to cells and be used interchangeably in the presence of other peptides and proteins on the same surface. Here, we evaluate the utility of four peptidyl motifs for their ability to facilitate delivery of luminescent semiconductor quantum dots (QDs) in a model cell culture system. We find that an LAH4 motif, derived from a membrane-inserting antimicrobial peptide, and a chimeric sequence that combines a sweet arrow peptide with a portion originating from the superoxide dismutase enzyme provide effective cellular delivery of QDs. Interestingly, a derivative of the latter sequence lacking just a methyl group was found to be quite inefficient, suggesting that even small changes can have significant functional outcomes. Delivery was effected using 1 h incubation with cells, and fluorescent counterstaining strongly suggests an endosomal uptake process that requires a critical minimum number or ratio of peptides to be displayed on the QD surface. Concomitant cytoviability testing showed that the QD–peptide conjugates are minimally cytotoxic in the model COS-1 cell line tested. Potential applications of these peptides in the context of cellular delivery of nanoparticles and a variety of other (bio)molecules are discussed.
Figure
?  相似文献   

6.
Considering our interest in the use of peptides as potential target-specific drugs or as delivery vectors of metallodrugs for various biomedical applications, it is crucial to explore improved synthetic methodologies to accomplish the highest peptide crude purity in the shortest time possible. Therefore, we compared “classical” fluorenylmethoxycarbonyl (Fmoc)-solid phase peptide synthesis (SPPS) with ultrasound(US)-assisted SPPS based on the preparation of three peptides, namely the fibroblast growth factor receptor 3(FGFR3)-specific peptide Pep1 (VSPPLTLGQLLS-NH2) and the novel peptides Pep2 (RQMATADEA-NH2) and Pep3 (AAVALLPAVLLALLAPRQMATADEA-NH2), which are being developed aimed at interfering with the intracellular protein-protein interaction(PPI) RANK-TRAF6. Our results demonstrated that US-assisted SPPS led to a 14-fold (Pep1) and 4-fold time reduction (Pep2) in peptide assembly compared to the “classical” method. Interestingly, US-assisted SPPS yielded Pep1 in higher purity (82%) than the “classical” SPPS (73%). The significant time reduction combined with high crude peptide purity attained prompted use to apply US-assisted SPPS to the large peptide Pep3, which displays a high number of hydrophobic amino acids and homooligo-sequences. Remarkably, the synthesis of this 25-mer peptide was attained during a “working day” (347 min) in moderate purity (approx. 49%). In conclusion, we have reinforced the importance of using US-SPPS towards facilitating the production of peptides in shorter time with increased efficacy in moderate to high crude purity. This is of special importance for long peptides such as the case of Pep3.  相似文献   

7.
Tian R  Ren L  Ma H  Li X  Hu L  Ye M  Wu R  Tian Z  Liu Z  Zou H 《Journal of chromatography. A》2009,1216(8):1270-1278
We report the development of a combined strategy for high capacity, comprehensive enrichment of endogenous peptide from complex biological samples at natural pH condition. MCM-41 nanoparticles with highly ordered nanoscale pores (i.e. 4.8nm) and high-surface area (i.e. 751m(2)/g) were synthesized and modified with strong cation-exchange (SCX-MCM-41) and strong anion-exchange (SAX-MCM-41) groups. The modified nanoparticles demonstrated good size-exclusion effect for the adsorption of standard protein lysozyme with molecular weight (MW) of ca. 15kDa; and the peptides with MW lower than this value can be well adsorbed. Step elution of the enriched peptides with five salt concentrations presented that both modified nanoparticles have high capacity and complementarity for peptides enrichment, and the SAX-MCM-41 nanoparticles has obviously high selectivity for acidic peptides with pI (isoelectric point) lower than 4. Large-scale enrichment of endogenous peptides in 2mg mouse liver extract was achieved by further combination of SCX-MCM-41 and SAX-MCM-41 with unmodified MCM-41 nanoparticles. On-line 2D nano-LC/MS/MS was applied to analyze the enriched samples, and 2721 unique peptides were identified in total. Two-dimensional analysis of MW versus pI distribution combined with abundance of the identified peptides demonstrated that the three types of nanoparticles have comprehensive complementarity for peptidome enrichment.  相似文献   

8.
A novel vector with high gene delivery efficiency and special cell targeting ability was developed using a good strategy that utilized low molecular weight polyethylenimine (PEI; molecular weight, 600 KDa [PEI600]) cross-linked to β-cyclodextrin (β-CyD) via a facile synthetic route. Human epidermal growth factor receptor 2 (Her-2) are highly expressed in a variety of human cancer cells and are potential targets for cancer therapy. MC8 peptides, which have been proven to combine especially with Her-2 on cell membranes were coupled to PEI-β-CyD using N-succinimidyl-3-(2-pyridyldithio) propionate as a linker. The ratios of PEI600, β-CyD, and peptide were calculated based on proton integral values obtained from the 1H-NMR spectra of the resulting products. Electron microscope observations showed that MC8-PEI-β-CyD can efficiently condense plasmid DNA (pDNA) into nanoparticles of about 200 nm, and MTT assays suggested the decreased toxicity of the polymer. Experiments on gene delivery efficiency in vitro showed that MC8-PEI-β-CyD/pDNA polyplexes had significantly greater transgene activities than PEI-β-CyD/pDNA in the Skov3 and A549 cells, which positively expressed Her-2, whereas, no such effect was observed in the MCF-7 cells, which negatively expressed Her-2. Our current research indicated that the synthesized nonviral vector shows improved gene delivery efficiency and targeting specificity in Her-2 positive cells.  相似文献   

9.
The self-assembly of peptides onto the surface of gold nanoparticles has emerged as a promising strategy towards the creation of artificial enzymes. The resulting high local peptide density surrounding the nanoparticle leads to cooperative and synergistic effects, which result in rate accelerations and distinct catalytic properties compared to the unconjugated peptide. This Minireview summarizes contributions to and progress made in the field of catalytically active peptide–gold nanoparticle conjugates. The origin of distinct properties, as well as potential applications, are also discussed.  相似文献   

10.
The self‐assembly of peptides onto the surface of gold nanoparticles has emerged as a promising strategy towards the creation of artificial enzymes. The resulting high local peptide density surrounding the nanoparticle leads to cooperative and synergistic effects, which result in rate accelerations and distinct catalytic properties compared to the unconjugated peptide. This Minireview summarizes contributions to and progress made in the field of catalytically active peptide–gold nanoparticle conjugates. The origin of distinct properties, as well as potential applications, are also discussed.  相似文献   

11.
The scarcity of effective means to deliver functional proteins to living cells is a central problem in biotechnology and medicine. Herein, we report the efficient delivery of an active DNA‐modifying enzyme to human stem cells through high‐density cell penetrating peptide brush polymers. Cre recombinase is mixed with a fluorophore‐tagged polymer carrier and then applied directly to induced pluripotent stem cells or HEK293T cells. This results in efficient delivery of Cre protein as measured by activation of a genomically integrated Cre‐mediated recombination reporter. We observed that brush polymer formulations utilizing cell penetrating peptides promoted Cre delivery but oligopeptides alone or oligopeptides displayed on nanoparticles did not. Overall, we report the efficient delivery of a genome‐modifying enzyme to stem cells that may be generalizable to other, difficult‐to‐transduce cell types.  相似文献   

12.
薛雅茹  郭睿  张博 《色谱》2020,38(12):1431-1439
在海洋天然产物中,马鲛鱼是一种重要的高活性抗氧化肽生物源,具有极高的加工附加值。由于鱼体组织的复杂性,活性抗氧化肽成分的提取和筛选对样品制备和分离技术提出了挑战。使用不同蛋白酶对鱼体组织进行酶解时,所获得的活性肽结构及功能活性会有显著的差别。为了获得高活性的抗氧化肽,该研究分别考察了风味蛋白酶、胰蛋白酶、酸性蛋白酶、中性蛋白酶、碱性蛋白酶5种蛋白酶的酶解效果。以二苯代苦味肼基自由基(DPPH·)、羟自由基(·OH)清除率和水解度(DH)为指标,筛选最优水解酶。结果表明,胰蛋白酶酶解液清除DPPH·和·OH能力最强,清除率分别达到88.93%±0.82%和53.09%±0.73%。在单因素试验的基础上,以DPPH·清除率为响应值,以加酶量、酶解温度和时间为函数,进行了三因素三水平响应面试验,获得水解度23.66%、DPPH·清除率93.78%以及·OH清除率62.59%的最优制备条件。纳流液相色谱具有低样品量、低溶剂消耗和高效等优势。为筛选出适合于马鲛鱼内脏抗氧化肽分离分析的固定相,该研究使用1∶1000分流比的纳流液相平台,分别使用反相C18柱(15 cm×100 μm, 5 μm, 30 nm)和强阳离子交换柱(15 cm×100 μm, 5 μm, 100 nm)进行分离,收集、冻干并评测了各组分的抗氧化能力。结果表明,强阳离子交换固定相更适合于马鲛鱼内脏抗氧化肽的分离纯化,并筛选出1个强活性抗氧化肽组分。该组分DPPH·清除力的半抑制浓度(IC50)为0.672±0.051 mg/mL,与纯化前相比提高了13.6倍。该研究报道了纳流液相色谱在海洋天然产物源抗氧化肽分离分析中的应用,并证明了其在活性抗氧化肽成分筛选中的有效性和良好的应用前景。  相似文献   

13.
《中国化学快报》2022,33(7):3361-3370
Radionuclide imaging is now the premier imaging method in clinical practice for its high sensitivity and tomographic capability. Current clinically available radio imaging methods mostly use positron-emission tomography (PET) and single-photon emission computed tomography (SPECT) to detect anatomic abnormalities that conventional imaging techniques typically have challenges for visualizing. Contrast agents are indispensable for radionuclide imaging, and the radionuclide is always attached to a suitable vector that achieves targeted delivery. Nowadays, peptides have attracted increasing interest in targeting vectors of contrast agents, mainly due to their high specificity for target receptors at nanomolar concentrations and low toxicity. Radiolabeled peptide probes as kinds of PET/SPECT tracers had become essential tools for clinical radionuclide diagnosis. This review mainly summarizes radiolabeled peptide probes for bioimaging, including fundamental concepts of radiolabeled peptide probe design, some typical peptide analogs radiocontrast agents for PET, SPECT, and the combination imaging.  相似文献   

14.
The impact of nanotechnologies in biomedicine and biotechnology is becoming more and more evident. It imposes practical challenges, for instance, raising specific issues on the biocompatibility of nanostructures. Nanoparticles are characterized by a high surface-to-volume ratio, which makes them reactive to foreign species. Thus, when proteins or peptides approach an inorganic nanoparticle, as well as a flat surface, they are likely to interact with the substrate to some extent. This interaction is crucial for applications in drug delivery, imaging, diagnostics, implants, and other medical devices. Specifically, gold nanoparticles are highly versatile and particularly appealing. It is widely accepted that the surfaces of nanoparticles adsorb proteins either transiently in the soft corona layer or permanently in the hard corona layer. As a consequence, the protein structure and/or function may undergo profound adjustments or remain conserved. Detailing the interaction of different inorganic substrates with proteins and peptides at the atomic level, and designing ways to control the interaction, is the key for biomedical applications of nanoparticles, both from a fundamental viewpoint and for practical implementations. In the last decade, we have addressed protein–nanoparticle interactions, focusing on interfaces of gold surfaces and nanoparticles with amyloidogenic peptides and protein models. We have developed classical force fields, performed advanced molecular dynamics simulations, and compared computational outcomes with data from nuclear magnetic resonance experiments. Protein–gold complexes with differently coated gold nanoparticles have been modeled to explore the effects of charge and size on the protein structure. Our work unravels that a complex interplay between surface properties and characteristics of the biological adsorbate determines whether peptide conformation is influenced and whether protein aggregation is accelerated or inhibited by the presence of the substrate. General guidelines to cope with amyloidogenic proteins could be inferred: these can be essentially summarized with the necessity of balancing the hydrophobic and electrostatic interactions that the amyloidogenic proteins establish with the coating moieties.  相似文献   

15.
采用碱性蛋白酶对核桃蛋白进行酶解, 检测了所得酶解物的抗氧化能力, 包括对1,1-二苯基-2-三硝基苯肼(DPPH)和羟基自由基(·OH)的清除能力; 利用Sephadex G-25 凝胶层析柱和反相柱对核桃蛋白酶解物进行分离纯化; 采用液相色谱-质谱(LC-ESI-Q-TOF)联用方法测得抗氧化能力最强的多肽的序列为Ala-Gly-Gly-Ala, 其还原力和还原型谷胱甘肽相当.  相似文献   

16.
Single drop microextraction using tetraalkylammonium bromide coated silver nanoparticles (SDME-AgNPs) prepared in toluene has been successfully applied as electrostatic affinity probes to preconcentrate peptide mixtures in biological samples prior to atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry (AP-MALDI-MS) analysis. This approach is based on the isoelectric point (pI) of peptides and surface charge of AgNPs. Using the SDME-AgNPs technique, from a peptide mixture, Met- and Leu-enkephalins (Met-enk and Leu-enk) were extracted into a droplet of toluene containing AgNPs, but not the neutral peptides (gramicidins). The best peptide extraction efficiency for SDME-AgNPs was observed with the optimized parameters: extraction time 2 min, sample agitation rate 240 rpm, and sample pH 7. The limits of detection (LODs) of the SDME-AgNPs/AP-MALDI-MS technique for Met-enk and Leu-enk peptides were 160 and 210 nM, respectively. Furthermore, the application of the technique has been shown for the analysis of peptides from a sample containing high matrix interferences such as 1% Triton X-100 and 6 M urea. Finally, this approach has been compared with the SDME-AuNPs technique and the results have clearly revealed that the SDME-AgNP affinity probe exhibits higher affinity to extract the sulfur-bearing peptide (Met-enk). We also compared this electrostatic affinity probe of AgNPs with the previously demonstrated hydrophobic affinity probe of AgNPs and found that the electrostatic probe can greatly reduce the extraction time from 1.5 h to 2 min. This is due to the fact that electrostatic attraction forces are much stronger than the hydrophobic attraction forces. Therefore, we concluded that the electrostatic affinity probe based on SDME-AgNPs coupled with AP-MALDI-MS is a high-throughput technique for the analysis of low-abundance peptides from biological samples containing complex matrices. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Somatostatin-14 (SS-14) and several SS-14 analogs were analyzed using liquid secondary ion mass spectrometry (LSIMS). The observed isotope distributions showed low levels of [H2-SS-14] (reduced SS-14). The daughter-ion spectra of the protonated molecule ions of SS-14 and several SS-14 analogs contained a number of metastable fragment ions. Two fragments in these spectra were assigned to cleavage of the peptide chain concomitant with unsymmetric cleavage of the disulfide bridge. Single alanine-substituted analogs of SS-14 were used to confirm these assignments, while single D isomer-substituted analogs of SS-14 were used to investigate the dependence of the cleavages on conformation.  相似文献   

18.
《中国化学快报》2023,34(6):107915
The biocompatibility and biodegradability of peptide self-assembled materials makes them suitable for many biological applications, such as targeted drug delivery, bioimaging, and tracking of therapeutic agents. According to our previous research, self-assembled fluorescent peptide nanoparticles can overcome the intrinsic optical properties of peptides. However, monochromatic fluorescent nanomaterials have many limitations as luminescent agents in biomedical applications. Therefore, combining different fluorescent species into one nanostructure to prepare fluorescent nanoparticles with multiple emission wavelengths has become a very attractive research area in the bioimaging field. In this study, the tetrapeptide Trp-Trp-Trp-Trp (WWWW) was self-assembled into multicolor fluorescent nanoparticles (TPNPs). The results have demonstrated that TPNPs have the blue, green, red and near infrared (NIR) fluorescence emission wavelength. Moreover, TPNPs have shown excellent performance in multicolor bioimaging, biocompatibility, and photostability. The facile preparation and multicolor fluorescence features make TPNPs potentially useful in multiplex bioanalysis and diagnostics.  相似文献   

19.
Gold nanoparticles having peptide chains on the surfaces have been prepared yb ring-opening polymerization of gamma-methyl L-glutamate N-carboxyanhydride with fixed amino groups on the nanoparticle surface as an initiator. The number of peptide chains on the surface was adjusted to ca. 2 molecules per gold nanoparticle by controlling the number of fixed amino groups on the surface. The peptide chains on the surface were partially saponified to obtain poly(gamma-methyl L-glutamate-co-L-glutamic acid) with 28 mol% of glutamic acid residues. The number-average molecular weight of the peptide was 73,000. We described structural control of the peptide-coated gold nanoparticle assembly by conformational transition of the surface peptides. In deionized water, the peptide chains on the nanoparticle took a random coil conformation, and the individual nanoparticles existed in dispersed globular species. On the other hand, the peptide chains on the nanoparticle took an alpha-helical conformation in trifluoroethanol. Under this condition, the alpha-helical peptide chains on distinct gold nanoparticles connected the nanoparticles to form a fibril assembly owing to the dipole-dipole interaction between the surface peptide chains. The morphology of the peptide-coated gold nanoparticle assembly could be controlled by the conformational transition of surface peptides, which was attended by solution composition changes.  相似文献   

20.
As a result of an increasing number of bacteria developing resistance against antibiotics, antimicrobial peptides (AMPs) are attracting significant interest, particularly in relation to identification of peptides displaying potent but selective effects. Much less focus has been placed on delivery systems for AMPs, despite AMPs suffering from delivery challenges related to their size, cationicity, and amphiphilicity. Inorganic nanoparticles may provide opportunities for controlling peptide release, reducing infection-related AMP degradation, or increasing bioavailability. Numerous such nanomaterials display potent and triggerable antimicrobial effects on their own. When combined with AMPs, combinatorial and synergistic effects in relation to the behavior of such mixed systems as antimicrobials have been observed. The mechanistic origin of these effects are poorly understood that at present, however, precluding rational design of mixed nanoparticle antimicrobials/AMPs and nanoparticulate delivery systems for AMPs. Here, the area of membrane interactions and antimicrobial effects of inorganic nanomaterials are briefly outlined, in combination with AMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号