首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygen reduction reaction (ORR) is one of the most important reactions in both life processes and energy conversion systems. The replacement of noble‐metal Pt‐based ORR electrocatalysts by nonprecious‐metal catalysts is crucial for the large‐scale commercialization of automotive fuel cells. Inspired by the mechanisms of dioxygen activation by metalloenzymes, herein we report a structurally well‐defined, bio‐inspired ORR catalyst that consists of a biomimetic model compound—an axial imidazole‐coordinated porphyrin—covalently attached to multiwalled carbon nanotubes. Without pyrolysis, this bio‐inspired electrocatalyst demonstrates superior ORR activity and stability compared to those of the state‐of‐the‐art Pt/C catalyst in both acidic and alkaline solutions, thus making it a promising alternative as an ORR electrocatalyst for application in fuel‐cell technology.  相似文献   

2.
Developing highly active and durable electrocatalysts for the oxygen reduction reaction (ORR) is crucial to large-scale commercialization of fuel cells and metal-air batteries. Here we report a facile approach for the synthesis of nitrogen and oxygen dual-doped mesoporous layer-structured carbon electrocatalyst embedded with graphitic carbon coated cobalt nanoparticles by direct pyrolysis of a layer-structured metal-organic framework. The electrocatalyst prepared at 800℃ exhibits comparable ORR performance to Pt/C catalysts but possesses superior stability to Pt/C catalysts. This synthetic approach provides new prospects in developing sustainable carbon-based electrocatalysts for electrochemical energy conversion devices.  相似文献   

3.
Water splitting is considered a promising approach for renewable and sustainable energy conversion. The development of water splitting electrocatalysts that have low-cost, long-lifetime, and high-performance is an important area of research for the sustainable generation of hydrogen and oxygen gas. Here, we report a metal-free porphyrin-based two-dimensional crystalline covalent organic polymer obtained from the condensation of terephthaloyl chloride and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin which is stabilized by an extensive hydrogen bonding network. This material exhibits bifunctional electrocatalytic performance towards water splitting with onset overpotentials, η, of 36 mV and 110 mV for HER (in 0.5 M H2SO4) and OER (in 1.0 M KOH), respectively. The as-synthesized material is also able to perform water splitting in neutral phosphate buffer saline solution, with 294 mV for HER and 520 mV for OER, respectively. Characterized by electrochemical impedance spectroscopy (EIS) and chronoamperometry, the as-synthesized material also shows enhanced conductivity and stability compared to its molecular counterpart. Inserting a non-redox active zinc metal center in the porphyrin unit leads to a decrease in electrochemical activity towards both HER and OER, suggesting the four-nitrogen porphyrin core is the active site. The high performance of this metal-free material towards water splitting provides a sustainable alternative to the use of scarce and expensive metal electrocatalysts in energy conversion for industrial applications.

Water splitting is considered a promising approach for renewable and sustainable energy conversion.  相似文献   

4.
Electrochemical reduction of O2 (oxygen reduction reaction; ORR) provides an opportunity to achieve the commercial application of clean energy, but it remains challenging, so the rational design of inexpensive and efficient electrocatalysts is required. Palladium-based electrocatalysts have emerged as a class of the most promising candidates for the ORR, which could accelerate O2 adsorption, dissociation, and electron transfer. However, the metal Pd atoms tend to aggregate into nanoparticles, driven by the tendency of the metal surface free energy to decrease, which significantly reduces the atom utilization efficiency and the catalytic performance. Herein, a facile double solvent impregnation method is developed for the synthesis of highly dispersed Pd nanoparticles supported on hollow carbon spheres (Pd-HCS), which could act as efficient electrocatalysts for the ORR in basic solution. Systematic investigation reveals that the nitrogen-containing and oxygen-containing functional groups (especially −COOH groups) are essential for achieving the homogenous dispersion of Pd nanoparticles. Significantly, the optimized Pd-HCS electrocatalyst with homogeneously dispersed Pd nanoparticles and Pd−N sites delivers high electrocatalytic activity for the ORR and excellent stability, without significant decay in onset potential and half-potential and good resistance to methanol crossover. This work offers a new route for the rational design of efficient ORR electrocatalysts toward advanced materials and emerging applications.  相似文献   

5.
The oxygen reduction reaction (ORR) is a vitally important process in fuel cells. The development of high-performance and low-cost ORR electrocatalysts with outstanding stability is essential for the commercialization of the electrochemical energy technology. Herein, we report a facile synthesis of cobalt (Co) and nitrogen (N) co-doped carbon nanotube@porous carbon (Co/N/CNT@PC-800) electrocatalyst through a one-step pyrolysis of waste paper, dicyandiamide, and cobalt(II) acetylacetonate. The surface of the hierarchical porous carbon supported a large number of carbon nanotubes (CNTs), which were derived from dicyandiamide through the catalysis of Co. The addition of Co resulted in the formation of a hierarchical micro/mesoporous structure, which was beneficial for the exposure of active sites and rapid transportation of ORR-relevant species (O2, H+, OH?, and H2O). The doped N and Co formed more active sites to enhance the ORR activity of the electrocatalyst. The Co/N/CNT@PC-800 material exhibited optimal ORR performance with an onset potential of 0.005 V vs. Ag/AgCl and a half-wave potential of –0.173 V vs. Ag/AgCl. Meanwhile, the electrocatalyst showed an excellent methanol tolerance and a long-term operational durability than that of Pt/C, as well as a quasi-four-electron reaction pathway. The low-cost and simple synthesis approach makes the Co/N/CNT@PC-800 a prospective electrocatalyst for the ORR. Furthermore, this work provides an alternative approach for exploring the use of biomass-derived electrocatalysts for renewable energy applications.  相似文献   

6.
The proper utilization of renewable energy sources has emerged as a major challenge in our pursuit of a sustainable and carbon-neutral energy landscape. Small molecule activation is a key component for proper utilization of renewable energy resources, where O2/H2O redox couple is reckoned to be a potential game changer. In this regard, electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have become the prime interest of catalyst designers. Typically, these ORR and OER electrocatalysts are developed distinctly; however, very soon, the requirement of a bidirectional ORR/OER electrocatalyst becomes obvious for practical applicability and rapid energy transduction purposes. A bidirectional catalyst is defined as a catalyst capable of driving a redox reaction in opposing directions. This review has portrayed the development of enzyme structure-inspired design of molecular bidirectional ORR/OER catalysts. The strategic incorporation of secondary and outer coordination sphere features has significantly enhanced the performance of these catalysts, which can be monitored via the key catalytic parameters. These bifunctional OER/ORR catalysts are vital for metal-air battery and fuel cell applications and appropriately poised to lay the foundation for an efficient, economical, and eco-friendly pathway for sustainable energy usage with the rational assembly of energy converting and storage devices.  相似文献   

7.
Urea electrolysis is an up-and-coming approach to realize sustainable energy-saving hydrogen fuel production and purification of urea-bearing wastes (e.g. urine, industrial wastewater). To attain a high urea electrolysis efficiency, high-performance electrocatalysts are highly required. Of late, transition metal (TM) chalcogenides-based materials are emerging as promising candidates for urea electrolysis. The catalytic performance of TM chalcogenides-based catalysts is optimized by tuning the internal/external characteristics, including nanostructure control, composition optimization, and heterostructuring. In this review, recent achievements in high-efficiency electrocatalysts based on TM chalcogenides for urea electrolysis are critically discussed. First, the electrochemistry of urea electrolysis is analyzed. Next, recent progress in TM chalcogenides-based electrocatalysts for urea electrolysis is detailed. The electrocatalyst design strategies are particularly elucidated, as well as the catalyst structure–performance correlation. Ultimately, perspectives on crucial scientific issues in this booming field are highlighted.  相似文献   

8.
The oxygen reduction reaction (ORR) is one of the most important reactions in life processes and energy conversion systems. To alleviate global warming and the energy crisis, the development of high-performance electrocatalysts for the ORR for application in energy conversion and storage devices such as metal–air batteries and fuel cells is highly desirable. Inspired by the biological oxygen activation/reduction process associated with heme- and multicopper-containing metalloenzymes, iron and copper-based transition-metal complexes have been extensively explored as ORR electrocatalysts. Herein, an outline into recent progress on non-precious-metal electrocatalysts for the ORR is provided; these electrocatalysts do not require pyrolysis treatment, which is regarded as desirable from the viewpoint of bioinspired molecular catalyst design, focusing on iron/cobalt macrocycles (porphyrins, phthalocyanines, and corroles) and copper complexes in which the ORR activity is tuned by ligand variation/substitution, the method of catalyst immobilization, and the underlying supporting materials. Current challenges and exciting imminent developments in bioinspired ORR electrocatalysts are summarized and proposed.  相似文献   

9.
The electrocatalyzed oxygen reduction and evolution reactions (ORR and OER, respectively) are the core components of many energy conversion systems, including water splitting, fuel cells, and metal–air batteries. Rational design of highly efficient non-noble materials as bifunctional ORR/OER electrocatalysts is of great importance for large-scale practical applications. A new strongly coupled hybrid material is presented, which comprises CoOx nanoparticles rich in oxygen vacancies grown on B,N-decorated graphene (CoOx NPs/BNG) and operates as an efficient bifunctional OER/ORR electrocatalyst. Advanced spectroscopic techniques were used to confirm formation of abundant oxygen vacancies and strong Co−N−C bridging bonds within the CoOx NPs/BNG hybrid. Surprisingly, the CoOx NPs/BNG hybrid electrocatalyst is highly efficient for the OER with a low overpotential and Tafel slope, and is active in the ORR with a positive half-wave potential and high limiting current density in alkaline medium.  相似文献   

10.
The electrocatalyzed oxygen reduction and evolution reactions (ORR and OER, respectively) are the core components of many energy conversion systems, including water splitting, fuel cells, and metal–air batteries. Rational design of highly efficient non‐noble materials as bifunctional ORR/OER electrocatalysts is of great importance for large‐scale practical applications. A new strongly coupled hybrid material is presented, which comprises CoOx nanoparticles rich in oxygen vacancies grown on B,N‐decorated graphene (CoOx NPs/BNG) and operates as an efficient bifunctional OER/ORR electrocatalyst. Advanced spectroscopic techniques were used to confirm formation of abundant oxygen vacancies and strong Co−N−C bridging bonds within the CoOx NPs/BNG hybrid. Surprisingly, the CoOx NPs/BNG hybrid electrocatalyst is highly efficient for the OER with a low overpotential and Tafel slope, and is active in the ORR with a positive half‐wave potential and high limiting current density in alkaline medium.  相似文献   

11.
The development of high-performance and cost-effective electrocatalysts towards oxygen reduction reaction(ORR) is of significant importance,but still challenging for the practical applications in related energy systems.ORR process typically suffers from sluggish kinetics,the exploration of ORR electrocatalyst thus requires elaborate design.Herein,an effective strategy is developed for growing Co/N-doped carbon nanotube arrays on 2D MOFs-derived matrix via the pyrolysis of Co/Zn metalorganic-framework(MOF) nanosheets.The Co/Zn-MOF nanosheets serve as both the self-template for the 2D carbonized framework morphology and C/N source for the in-situ growth of 1D N-doped carbon nanotubes.The constructed hie rarchical architecture effectively integrates the OD/1D Co nanoparticle/Ndoped carbon nanotube interface and 1D(nanotubes)/2D(nanosheets) junction into frameworks with highly exposed active surface,enhanced mass-transport kinetics and electrical conductivity.As a result,the designed composite exhibits superior ORR activity and durability in alkaline media as compared to commercial Pt/C.Particularly,it shows promising ORR performance with a half-wave potential of 0.78 V versus reversible hydrogen electrode and negligible activity attenuation after 5000 potential cycles in acidic electrolyte.The designed strategy can be extended to construct other MOFs-derived carbon matrixes with diverse hierarchical structures and provide an efficient avenue for searching highperformance electrocatalysts.  相似文献   

12.
Exploring novel materials deriving from earth resources to substitute for platinum(Pt) electrocatalyst to promote oxygen reduction reaction(ORR) of fuel cell cathode is very important. Herein, we have exploited two crystallographic thiophene-sulfur covalent organic frameworks(COFs), termed JUC-607 and JUC-608, as electrocatalysts that exhibited good ORR performances. These thiophene-sulfur COFs exhibited high stability, and their functional groups acting as active centers in the ORR can be precisely determined. Notably, due to a larger aperture for mass transfer and electrons transport, JUC-608 displayed a growing electrochemical performance, leading to a better ORR activity. Thus, this study will provide a new strategy for designing heteroatom-based COF materials for high-performance electrochemical catalysis.  相似文献   

13.
An ice/salt-assisted strategy has been developed to achieve the green and efficient synthesis of ultrathin two-dimensional (2D) micro/mesoporous carbon nanosheets (CNS) with the dominant active moieties of Fe−N4 (Fe-N-CNS) as high-performance electrocatalysts for the oxygen reduction reaction (ORR). The strategy involves freeze-drying a mixture of iron porphyrin and KCl salt using ice as template followed by a confined pyrolysis with KCl as an independent sealed nanoreactor to facilitate the formation of 2D carbon nanosheets, N incorporation, and porosity creation. The well-defined assembly of ultrathin 2D carbon nanosheets ensures high utilization of D1 and D3 Fe−N4 active sites, and effectively promotes the mass transport of ORR reactants by virtue of the pronounced mesoporous structure. The resulting Fe-N-CNS electrocatalyst was shown to exhibit superior ORR activity, better electrochemical durability, and methanol tolerance towards ORR in alkaline electrolyte relative to the commercial Pt/C electrocatalyst.  相似文献   

14.
Electrochemical energy storage and conversion devices play a key role in the development of clean, sustainable, and efficient energy systems to meet the sustainable growth of our society. However, challenging issues including the sluggish kinetics of oxygen electrode reactions involving the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are present, limiting the implementation of devices such as metal‐air batteries, water electrolyzers, and regenerative fuel cells. In this review, various monometallic and bimetallic transition metal oxides (TMOs) and hydroxides are summarized in terms of their application for ORR/OER, in which the merits and demerits of various precious metal and carbon‐based metal oxide materials are discussed, with requirements for better electrocatalysts and catalyst support being introduced as well. Following this, different approaches to improve catalytic activity such as the introduction of doping and defects, the manipulation of crystal facets, and the engineering of supports, compositions, and morphologies are summarized in which TMOs with improved ORR/OER catalytic activities can be synthesized, further improving the speed, stability, and polarization of electrochemical energy storage and conversion devices. Finally, perspectives into the improvement of performance and the better understanding of ORR/OER mechanisms for bifunctional electrocatalysts using in situ spectroscopic techniques and density functional theory calculations are also discussed.  相似文献   

15.
In view of the clean and sustainable energy, metal–organic frameworks (MOFs) based materials, including pristine MOFs, MOF composites, and their derivatives are emerging as unique electrocatalysts for oxygen reduction reaction (ORR). Thanks to their tunable compositions and diverse structures, efficient MOF-based materials provide new opportunities to accelerate the sluggish ORR at the cathode in fuel cells and metal–air batteries. This Minireview first provides some introduction of ORR and MOFs, followed by the classification of MOF-based electrocatalysts towards ORR. Recent breakthroughs in engineering MOF-based ORR electrocatalysts are highlighted with an emphasis on synthesis strategy, component, morphology, structure, electrocatalytic performance, and reaction mechanism. Finally, some current challenges and future perspectives for MOF-based ORR electrocatalysts are also discussed.  相似文献   

16.
In view of the clean and sustainable energy, metal–organic frameworks (MOFs) based materials, including pristine MOFs, MOF composites, and their derivatives are emerging as unique electrocatalysts for oxygen reduction reaction (ORR). Thanks to their tunable compositions and diverse structures, efficient MOF‐based materials provide new opportunities to accelerate the sluggish ORR at the cathode in fuel cells and metal–air batteries. This Minireview first provides some introduction of ORR and MOFs, followed by the classification of MOF‐based electrocatalysts towards ORR. Recent breakthroughs in engineering MOF‐based ORR electrocatalysts are highlighted with an emphasis on synthesis strategy, component, morphology, structure, electrocatalytic performance, and reaction mechanism. Finally, some current challenges and future perspectives for MOF‐based ORR electrocatalysts are also discussed.  相似文献   

17.
Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal–air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen‐doped, partially graphitized carbon framework. Benefiting from the unique pomegranate‐like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4‐based composite electrocatalyst exhibited a high half‐wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm?2 for OER. A single‐cell zinc–air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal–air batteries.  相似文献   

18.
Electrochemical water splitting has been considered an important method for facilitating renewable and sustainable energy conversion. For the practical application of water electrocatalysis, it is important to develop a non-noble metal-based, earth-abundant, highly efficient, and stable electrocatalysts for water splitting. Among the various non-noble metal-based electrocatalysts, layered transition metal chalcogenides (TMCs) have emerged as fascinating materials for electrochemical water splitting. The unique structural and electronic properties of layered TMCs make them very attractive for understanding the fundamental principles of electrocatalysis, as well as for developing highly efficient and stable electrocatalysts for the practical application of water electrocatalysis. In this mini review, we present a comprehensive overview of recent developments to improve the intrinsic electrocatalytic activity of layered transition metal chalcogenide (TMC)-based electrocatalysts for practical applications in water splitting.  相似文献   

19.
The rational design and effective construction of precious-metal-free materials for OER and ORR, respectively, are reviewed in the respects of electronic structure regulation, nanostructure tailor, and freestanding electrode fabrication. This affords fresh concepts for oxygen electrocatalysis and is also enlightening for other energy catalysis with targeted optimization.  相似文献   

20.
Exploring high-performance electrocatalysts, especially non-noble metal electrocatalysts, for the oxygen evolution reaction (OER) is critical to energy storage and conversion. Herein, we report for the first time that conjugated microporous polymers (CMPs) incorporating salen can be used as OER electrocatalysts with outstanding performances. The best OER electrocatalyst (salen-CMP-Fe-3) exhibits a low Tafel slope of 63 mV dec−1 and an overpotential of 238 mV at 10 mA cm−2. DFT and Grand Canonical Monte Carlo calculations confirmed that the significantly improved electrocatalytic properties can be attributed to the intrinsic catalytic activity of the salen moiety and the enrichment effect of the pore structures. This work demonstrates that salen-based conjugated polymers are a type of metal-coordinated porous polymer that show excellent catalyst performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号