首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer‐based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli‐responsive or self‐healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3551–3577.  相似文献   

2.
3.
Dynamic covalent chemistry is an effective technique for the preparation of complex organic compounds. We succeeded in synthesizing a cage-shaped compound through the aggregation of two types of functional molecules. More specifically, a tris-imine 5 was quantitatively obtained by reacting a C3-symmetric trialdehyde 1 with a triamine 4 in acetonitrile in the presence of a trifluoroacetic acid catalyst. We also achieved the synthesis of the corresponding triamine 9 and the acetylated derivative 10 through reduction of the tris-imine CN double bonds and subsequent acetylation.  相似文献   

4.
Lyndsey M. Greig 《Tetrahedron》2007,63(11):2391-2403
10-Hydroxy-10,9-boroxophenanthrene reacts rapidly and reversibly with both benzylic and alkane diols in non-polar solvents. The formation of 2:1 adducts between the boroxoaromatic and the diols is favoured. The diol component of the adduct can be exchanged readily and rapidly by treatment of the boroxoaromatic-diol adduct with an alternative diol in solution at room temperature. This reversible covalent chemistry would appear to be ideal for the dynamic assembly of more complex superstructures. However, attempts to extend this dynamic equilibrium to the assembly of macrocycles using the bifunctional boroxoaromatic 5,9-dihydroxy-5,9-dibora-4,10-dioxopyrene failed as a result of changes in the reactivity of the boron centre in the bifunctional boron-containing compound.  相似文献   

5.
Versatile photoresponsive gels based on tripodal low molecular weight gelators (LMWGs) are reported. A cyclohexane-1,3,5-tricarboxamide (CTA) core provides face-to-face hydrogen bonding and a planar conformation, inducing the self-assembly of supramolecular polymers. The CTA core was substituted with three arylazopyrazole (AAP) arms. AAP is a molecular photoswitch that isomerizes reversibly under alternating UV and green light irradiation. The E isomer of AAP is planar, favoring the self-assembly, whereas the Z isomer has a twisted structure, leading to a disassembly of the supramolecular polymers. By using tailor-made molecular design of the tripodal gelator, light-responsive organogels and hydrogels were obtained. Additionally, in the case of the hydrogels, AAP was coupled to the core through hydrazones, so that the hydrogelator and, hence, the photoresponsive hydrogel could also be assembled and disassembled by using dynamic covalent chemistry.  相似文献   

6.
Reversible boronate-catechol linkage was widely used to construct two-dimensional coatings and threedimensional nanostructures or hydrogels.The construction of these functional materials usually requires the pre-synthesis of macro molecular building blocks,and direct gelation between natural polyphenols and small molecule boranic acids is yet to be investigated.In this study,we fabricated a family of allsmall-molecule dynamic covalent gels consisting of tannic acid and boronic acids.Transparent and thixotropic gels were formed by boronate affinity towards catechol groups abundant on natural polyphenols.The gels showed multi-responsiveness,such as acid-,base-,reduction-and oxidantsensitive depending on the used boronic acid building blocks.The chemistry for gel formation and stimuli-responsiveness was characterized by11B NMR spectroscopy.The multi-stimuli responsiveness,green processing and facile modular design make the boronic acid-tannic acid gels promising candidates for the development of smart soft materials.  相似文献   

7.
8.
We describe adsorption of neutral flexible polymer chains onto small colloids that can be covered by one chain. We discuss the structure of star-shaped complexes and their abundance in dilute solution. In semi-dilute solution similar complexes form crosslinks between chains and cause gelation.  相似文献   

9.
《中国化学快报》2020,31(5):1051-1059
Drug delivery systems(DDSs) are of paramount importance to deliver drugs at the intended targets,e.g.,tumor cells or tissue by prolonging blood circulation and optimizing the pharmaceutical profiles.However,the therapeutic efficacy of DDSs is severely impaired by insufficient or non-specific drug release.Dynamic chemical bonds having stimuli-liable prope rties are the refore introduced into DDSs for regulating the drug release kinetics.This review summarizes the recent advances of dynamic covalent chemistry in the DDSs for improving cancer therapy.The review discusses the constitutions of the major classes of dynamic covalent bonds,and the respective applications in the tumor-targe ted DDSs which are based on the different responsive mechanisms,including acid-activatable and reduction-activatable.Furthermore,the review also discusses combination strategies of dual dynamic covale nt bonds which can response to the complex tumor microenvironment much more accurately,and then summarizes and analyzes the prospects for the application of dynamic covalent chemistry in DDSs.  相似文献   

10.
11.
A family of macrocycles with oligo(ethylene glycol) chains, 4O, 5O, and 6O, was developed to construct a series of new incorporated macrocycles through dynamic covalent chemistry. These flexible macrocycles exhibited excellent "self-sorting" abilities with diamine compounds, which depended on the "induced-fit" rule. For instance, the host macrocycles underwent conformational modulation to accommodate the diamine guests, affording [1+1] intramolecular addition compounds regardless of the flexibility of the diamine. These macrocycles folded themselves to fit various diamines with different chain length through modulation of the flexible polyether chain, and afforded intramolecular condensation products. However, if the chain of the diamine was too long and rigid, oligomers or polymers were obtained from the mixture of the macromolecule and the diamine. All results demonstrated that inclusion compounds involving conformationally suitable aromatic diamines were thermodynamically favorable candidates in the mixture due to the restriction of the macrocycle size. Furthermore, kinetic and thermodynamic studies of self-sorting behaviors of both mixed 4O-5O and 4O-6O systems were investigated in detail. Finally, theoretical calculations were also employed to further understand such self-sorting behavior, and indicated that the large enthalpy change of H(2)NArArNH(2)@4O is the driving force for the sorting behavior. Our system may provide a model to further understand the principle of biomolecules with high specificity due only to their conformational self-adjusting ability.  相似文献   

12.
This Letter describes an efficient method for constructing a C3-symmetric [4]rotaxane through hydrogen bond-guided self-assembly and boroxine formation. The reactions proceed under mild conditions in solution, with entropically driven forces promoting the formation of the [4]rotaxane.  相似文献   

13.
Xuejun Liu 《Tetrahedron》2009,65(35):7303-5095
The syntheses of two water-soluble octahedral polyammonium nanocapsules 5e and 5f are described. Nanocapsule 5e was prepared via the TFA-catalyzed condensation reaction of six MOM-protected 4-hydroxybutyl-footed tetraformyl cavitands 3c with 12 ethylene diamines, followed by reduction and acidic hydrolysis of the intermediate octahedral polyimino nanocapsule. Nanocapsule 5f was prepared from 5e via the oxidation of the 4-hydroxybutyl feet to 3-carboxypropyl feet. Both nanocapsules are soluble in water below pH 5. 5f is also water-soluble above pH 7. In acidic aqueous solution, nanocapsule 5e encapsulates small negatively charged, partially hydrophobic guests, such as p-toluenesulfonic acid, N-BOC-aspartic acid, or 4-methylumbelliferyl phosphate. The single site microscopic binding constants for the latter guests are 150±30, 510±50, 1550±150 M−1, respectively and were determined from 1H NMR titrations and DOSY experiments by assuming a 6:1 binding model with six identical, independent binding sites per nanocapsule (statistical binding). 5e doesn't bind small neutral hydrophobic molecules in aqueous solution. However, both nanocapsules bind to nucleotides, such as ATP, dAMP, dGMP or TTP. NMR experiments support that nucleotides are not encapsulated, but bind to the outside of the nanocapsules.  相似文献   

14.
Well conducted: a two-dimensional porphyrin covalent organic framework is described. Owing to the eclipsed stacking alignment, the framework is conductive and allows high-rate carrier transport through the porphyrin columns. The central metal in the porphyrin rings changes the conducting nature of the material from hole to electron, and to ambipolar conduction. It also drives the high on-off ratio photoconductivity of the framework.  相似文献   

15.
16.
The evolution of the universe from the particle to the thinking organism has taken place through self-organization. Chemistry has a major role to play in understanding these processes leading to the generation of complex matter. Chemistry has developed a highly powerful molecular synthetic chemistry, mastering the combination and recombination of atoms into increasingly complex molecules through selective chemical reactions. Supramolecular chemistry is harnessing intermolecular forces for the generation of informed supramolecular systems and processes through supramolecular synthetic chemistry implementing molecular information carried by electromagnetic interactions. Supramolecular chemistry has been actively exploring systems undergoing self-organization, i.e., systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, under the control of interactional molecular recognition events, thus behaving as programmed chemical systems. Molecular chemistry may similarly take advantage of the selectivity of covalent reactions to assemble complex molecular architectures through self-organization processes implementing functional molecular recognition. Supramolecular/non-covalent and molecular/covalent SELF-ORGANIZATION may thus be considered as the ULTIMATE SYNTHETIC CHEMISTRY, whereby chemical objects at both levels are generated on the basis of recognition processes involving either interactional or reactional features. Illustrations from the supramolecular domain will serve as illustrations. Supramolecular entities as well as molecules containing reversible bonds are able to undergo a continuous change in constitution by reorganization and exchange of building blocks. This capability defines a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels. CDC introduces a paradigm shift with respect to constitutionally static chemistry. It takes advantage of dynamic constitutional diversity to allow variation and selection and thus leads towards the emergence of adaptive and evolutive chemistry.  相似文献   

17.
Comb‐like polymers carrying two elastin‐like polypeptide (ELP) pendants in each repeat unit were synthesized. The densely attached peptide chains afford these polymers with sharp thermally induced phase transitions, and their lower critical solution temperature (LCST) can be varied with molecular weights, solution pH and salt concentrations. Through amino terminals in ELP pendants, oligoethylene glycol (OEG)‐based dendrons cored with aldehyde were attached to the polymers through dynamic covalent imines. By virtue of dynamic characteristics of these novel dendronized polymers, their LCSTs can be tuned significantly by dendron coverage to shift from that dominated by ELPs to that dominated by OEG dendrons. Furthermore, dendron coverage can be enhanced obviously by the thermally induced phase transitions or greatly by freezing the polymer aqueous solutions. The work provides a convenient methodology to improve thermoresponsiveness of ELPs through polymer topology and to switch their properties through dynamic covalent chemistry. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3379–3387  相似文献   

18.
Mechanically interlocked molecules have found extensive applications in areas all across the physical sciences, from materials to catalysis and sensing. However, introducing mechanical bonds and entanglements at the molecular level is still a significant challenge due to the inherent restriction in entropy needed to preorganize strands before interlocking. Over the last decade, dynamic covalent chemistry has emerged as one of the most efficient methods of forming rotaxanes, catenanes and molecular knots. By using reversible bonds such as imines, disulfides and boronate esters, one can use the inherent error-correction in these linkages to form interlocked architectures with high fidelity and often in excellent yields. This review reports on recent advances in the use of dynamic covalent chemistry to make mechanically interlocked molecules, systematically surveying clipping, capping and templating approaches with dynamic bonds. Furthermore, it is also discussed how dynamic bonds can be used to control motion, co-conformational expression and catalytic activity in mechanically interlocked molecular machinery.  相似文献   

19.
A structure that can self‐heal under standard conditions is a challenge faced nowadays and is one of the most promising areas in smart materials science. This can be achieved by dynamic bonds, of which diarylbibenzofuranone (DABBF) dynamic covalent bond is an appealing solution. In this report, we studied the DABBF bond formation against arylbenzofuranone (ABF) and O2 reaction (autoxidation). Our results show that the barrierless DABBF bond formation is preferred over autoxidation due to the charge transfer process that results in the weakly bonded superoxide. We calculated the electronic and structural properties using total energy density functional theory. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
Thomas Gottschalk 《Tetrahedron》2008,64(36):8307-8317
Two molecular baskets are presented, which were constructed based on a resorcin[4]arene platform. The molecules completely surround suitable guests, such as cyclo- or oxacycloalkanes, and bind them with high strength. The thermodynamic parameters for inclusion complexation were determined as well as the influence of encapsulation on the ring inversion barrier of bound cyclohexane. Two-dimensional NMR spectroscopy clearly shows the existence of a directed attractive interaction between oxacyclohexane and one of the hosts, which constrains the rotation of the bound molecule. Both containers exhibit remarkable binding selectivity as a consequence of their precisely defined structures. They both differentiate between homologous cycloalkanes, and whereas cyclohexane binds best within the larger of the two interior cavities, cyclopentane fits best in the smaller one. The selectivity is governed by ideal filling of space. We have conducted molecular dynamics experiments to understand the thermal fluctuations in the cavity sizes when a guest is bound. The simulations show that within a very narrow range the hosts adapt their binding site to different guests in order to optimize the fraction of occupied space. Once a binding geometry is established, it is characterized by a very low degree of flexibility. The guest-hosting properties of both molecules can be suspended by an external stimulus: addition of acid induces an opening of portals in the structures and immediately releases all bound cargo. Neutralization of the solution completely restores the initial state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号