首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-cysteine (ZLC-NCA) with amino-terminated poly(L-lactide) (NH 2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by (1)H NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers. The cell adhesion and cell spread on the PZLC-b-PLLA and PLC-b-PLLA films were enhanced compared to those on pure PLA film. PLC-b-PLLA can self-assemble to form micelles in aqueous media. A pyrene probe is used to demonstrate the micelle formation of PLC-b-PLLA in aqueous solution. Due to the ease of disulfide exchange with thiols, the obtained micelles are reversible shell cross-linked (SCL) micelles. The morphology and size of the micelles are studied by dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM).  相似文献   

2.
This paper describes the assembly and disassembly of vesicles formed by a UV-responsive poly(ethylene glycol) terminated malachite green derivative. The UV-responsive amphiphile with both a hydrophobic malachite green group and a hydrophilic PEG group can self-organize into vesicles in water before UV irradiation. However, upon UV irradiation, the photochromic moiety can be ionized to its corresponding cation, leading to the disassembly of these vesicles. In addition, the cation can thermally recover its electrically neutral form, and the disassembled species can form vesicles reversibly on the basis of a thermal reverse reaction. The reverse reaction is temperature-controlled and can be speeded up by thermal treatment. By using various characterization techniques, e.g., transmission electron microscopy, dynamic light scattering, UV-visible spectroscopy, and NMR spectroscopy, we have confirmed that the vesicle structures can be formed, disassembled, and recovered by the above-mentioned treatments. It is anticipated greatly that this line of research may provide new insights into the mechanism behind stimuli-responsive formation and rupture of molecular assemblies, facilitating the design and synthesis of new surface active molecules for the fabrication of stimuli-responsive materials with designed functions.  相似文献   

3.
An electroactive tetrathiafulvalene (TTF)-functionalized amphiphile 1 was designed and synthesized to investigate its self-assembling behavior in water. Dynamic light scattering (DLS), (1)H NMR, fluorescence spectrum, and cryogenic transmission electron microscopy (cryo-TEM) studies revealed that amphiphile 1 can form micelle-like aggregates via direct dissolution into water, and the micellar architectures could be disrupted either by addition of chemical oxidant Fe(ClO(4))(3) or by complexation with electron-deficient cyclobis(paraquat-p-phenylene) tetracation cyclophane (CBPQT(4+)) to release encapsulated hydrophobic dye Nile Red from the interior of micelles.  相似文献   

4.
Surface activity and aggregation behavior of an amino acid-based zwitterionic amphiphile N-(2-hydroxydodecyl)-L-valine were studied in aqueous solutions (pH 13). The self-assembly formation was investigated by use of a number of techniques including surface tension, conductivity, viscosity, fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. The amphiphile exhibits two breaks in the surface tension vs concentration plot indicating stepwise aggregate formation and thus results in two values of critical aggregation concentration. The amphiphile was found to be very surface active compared to fatty acid soaps. The average hydrodynamic diameter and size distribution of the aggregates were obtained from DLS measurements. Conductivity measurements suggested formation of vesicles or closed tubules. TEM pictures revealed the existence of spherical vesicles, separated tubules, and tubules with multiple Y-type junctions in going from dilute to moderately concentrated solution. However, in concentrated solution, the junctions break to form separate tubular structures which upon further increase of concentration are converted to rod-like micelles. The mechanism of branched tubule formation is discussed in light of the experimental observations.  相似文献   

5.
The pyranine-induced micellization of poly(ethylene glycol)-block-poly(4-vinylpyridine) (PEG114-b-P4VP61) in aqueous solutions and pH-triggered release of pyranine from the complex micelles were studied by dynamic and static light scattering, transmission electron microscopy, 1H NMR spectroscopy, and UV-vis spectroscopy. At pH 2, the ionized pyranine can ionically cross-link the protonated P4VP block and result in well-defined spherical complex micelles with a P4VP/pyranine core surrounded by a PEG corona. The ratio of pyranine to pyridyl units can influence the structure and the properties of the resultant complex micelles. The complex micelles are stable upon dilution and heating but are sensitive to pH changes. pH-triggered release of the incorporated pyranine from the complex micelles demonstrates that the release behavior is pH-tunable and displays good controlled-release characteristics at pH approximately 4.  相似文献   

6.
Comparative studies of bulk samples of hydrolytically degradable poly(lactic acid) (PLA) vs core-shell block copolymer micelles having PLA cores revealed remarkable acceleration in the proteinase K enzymatic hydrolysis of the nanoparticulate forms and demonstrated that even with amidation-based shell cross-linking the core domain remained accessible. Kinetic analyses by (1)H NMR spectroscopy showed less than 20% lactic acid released from enzymatically catalyzed hydrolysis of poly(l-lactic acid) in bulk, whereas ca. 70% of the core degraded within 48 h for block copolymer micelles of poly(N-(acryloyloxy)succinimide-copolymer-N-acryloylmorpholine)-block-poly(L-lactic acid) (P(NAS-co-NAM)-b-PLLA), with only a slight reduction to ca. 50% for the shell cross-linked derivatives. Rigorous characterization measurements by NMR spectroscopy, fluorescence spectroscopy, dynamic light scattering, atomic force microscopy, and transmission electron microscopy were employed to confirm core excavation. These studies provide important fundamental understanding of the effects of nanoscopic dimensions on protein-polymer interactions and polymer degradability, which will guide the development of these degradable nanoconstructs to reach their potential for controlled release of therapeutics and biological clearance.  相似文献   

7.
在选择性溶剂中进行RAFT聚合一步合成核交联的纳米胶束   总被引:1,自引:0,他引:1  
在选择性溶剂中,大分子RAFT试剂PSSC(S)Ph和AIBN引发剂存在下,进行4乙烯基吡啶(4VP)和二乙烯基苯(DVB)的RAFT聚合,一步合成了稳定的平头型胶束.大分子RAFT试剂是通过以二硫代苯甲酸2(乙氧甲酰基)2丙酯为链转移剂,AIBN为引发剂进行苯乙烯的RAFT聚合反应获得的.嵌段共聚,胶束化和交联反应一锅完成.1HNMR,DLLS,SLLS,TEM和AFM等验证了产品的组成与结构.  相似文献   

8.
We have investigated the aggregates formed by gemini and single-chain cationic surfactants with arginine head groups in dilute solutions by combining SAXS, static and dynamic light scattering, and PGSE NMR techniques. SAXS and NMR spectroscopy indicate that the single-chain homologue forms spheroidal aggregates, whereas the gemini surfactants form cylindrical micelles. The main parameters characterizing the micellar shape, i.e., aggregation numbers and geometrical dimensions, were evaluated from the analysis of the SAXS and NMR data. These structural parameters are in good agreement with those determined previously by surface tension and cryo-TEM studies. Some divergences were obtained using the light scattering technique, in which case the shapes of the aggregates formed by the single-chain surfactant were not in accordance with those obtained by SAXS and NMR spectroscopy.  相似文献   

9.
Novel amphiphilic cationic cellulose (HMQC) derivatives carrying long chain alkyl groups as hydrophobic moieties and quaternary ammonium groups as hydrophilic moieties were synthesized. Structure and properties of the amphiphilic cellulose derivatives were characterized by elemental analysis, FT-IR, (1)H NMR, ζ-potential measurement, dynamic light scattering (DLS), fluorescence spectroscopy and transmission electron microscopy (TEM). The results revealed that HMQCs can be self-assembled into cationic micelles in distilled water with the average hydrodynamic radius of 320-430 nm. The cytotoxicity study showed that the HMQC exhibited low cytotoxicity. Prednisone acetate, a water insoluble anti-inflammation drug, was chosen as a model drug to investigate the utilization of self-assembled HMQC micelles as a delivery carrier for poorly water-soluble drugs. The study indicated that the prednisone acetate could be incorporated effectively in the self-assembled HMQC micelles and be controlled released.  相似文献   

10.
This is the first light scattering study demonstrating that the size of micelles, the aggregation number, and the mobility of the core blocks of the micelles could be controlled by the length of the cross-linker in the micellar cores. The core cross-linked micelles were prepared using a poly[(4-pyridinemethoxy-methyl)styrene]-block-polystyrene (PPySt-b-PSt) diblock copolymer and perfluoroalkyl dicarboxylic acid. The PPySt-b-PSt copolymer formed the micelles in THF, a nonselective solvent, in the presence of the perfluoroalkyl dicarboxylic acid. The light scattering studies demonstrated that the micellar size and aggregation number were dependent on the chain length of the perfluoroalkyl dicarboxylic acid. Perfluoroazelaic acid produced micelles with a larger hydrodynamic radius and higher aggregation number than tetrafluorosuccinic acid. The micellization proceeded through the formation of the pyridinium carboxylate and the cross-linkage between the PPySt blocks via the dicarboxylic acid. The core cross-linked micelles were thermally stable and maintained its structure with changes in the temperature. A 1H NMR analysis revealed that the micelles prepared by perfluoroazelaic acid had more mobility of the core blocks than those by tetrafluorosuccinic acid.  相似文献   

11.
Reversible assembly and disassembly of rod-like large complex micelles have been achieved by applying photoswitching of supramolecular inclusion and exclusion of azobenzene-functionalized hyperbranched polyglycerol and α-cyclodextrin as driving force, promising a versatile system for self-assembly switched by light. Hydrogen-nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) spectroscopy were applied to characterize the azobenzene-functionalized hyperbranched polyglycerol. Atomic force microscopy (AFM), transmission electron microscopy (TEM) and dynamic laser light scattering (DLS) were employed to investigate and track the morphology of the rod-like large complex micelles before and after irradiation of UV light.  相似文献   

12.
A novel photo and thermo double‐responsive block copolymer was developed to fabricate micelles and reverse micelles in aqueous solution. The block copolymer was synthesized by ATRP block copolymerization of a spiropyran‐ containing methacrylate (SPMA) with di(ethylene glycol) methyl ether methacrylate (DEGMMA). By facile control of the photo irradiation and solution temperature, PSPMA‐core and PDEGMMA‐core micelles can be obtained, respectively. The thermo‐ and photo‐responsive micelles were used as smart polymeric nanocarriers for controlled encapsulation, triggered release, and re‐encapsulation of model drug coumarin 102. The double‐responsive self‐assembly and disassembly were tracked by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2855–2861, 2010  相似文献   

13.
We present a simple method based on the dispersion of fluorescent quantum dots (QD) into a liquid crystal phase that provides either nanostructured material or isolated QD micelles depending on water concentration. The liquid-crystal phase was obtained by using a gallate amphiphile with a poly(ethylene glycol) chain as the polar headgroup, named I. The hydration of QD/I mixtures resulted in the formation of a composite hexagonal phase identified by small-angle X-ray scattering and by polarized light and fluorescence optical microscopy, showing a homogeneous distribution of fluorescence within hexagonal phase. This composite mesophase can be converted into isolated QD-I micelles by dilution in water. The fluorescent QD-I micelles, purified by size exclusion chromatography, are well monodisperse with a hydrodynamic diameter of 20-30 nm. Moreover, these QD do not show any nonspecific adsorption on lipid or cell membranes. By simply adjusting the water content, the PEG gallate amphiphile I provides a simple method to prepare a self-organized composite phase or pegylated water soluble QD micelles for biological applications.  相似文献   

14.
In this work the physicochemical behavior of a series of phytosterol ethoxylates in water is presented. The influence of the length of the polyoxyethylene chain is studied. The surfactant solutions have been examined by means of birefringent microscopy, surface tension, self-diffusion 1H NMR, dynamic and static light scattering, and rheology. The surfactants with a hydrophilic chain of 10 oxyethylene units or more gave a micellar region. The CMC values were generally very low and a reverse relationship between the CMC value and the polyoxyethylene chain length was obtained. The time required to reach equilibrium surface tension was very long, more than 150 min. For the hydrophobic surfactants large lamellar regions appeared while for the more hydrophilic surfactants cubic and hexagonal structures were present which remained stable up to temperatures of 100 degrees C. In the micellar region prolate aggregates were formed which showed "ghostlike" behavior, consisting of cross-linked micelles with very fast relaxation times. Copyright 1999 Academic Press.  相似文献   

15.
Reverse micelles currently gain increasing interest in chemical technology. They also become important in biomolecular NMR due to their ability to host biomolecules such as proteins. In the present paper, a procedure for the preparation of high-pressure NMR samples containing reverse micelles dissolved in supercritical xenon is presented. These reverse micelles are formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT). For the first time, NMR spectroscopy could be applied to reverse micelles in supercritical xenon. The AOT/H(2)O/Xe system was studied as a function of experimental parameters such as xenon pressure, water content, and salt concentration. Optimum conditions for reverse micelle formation in supercritical xenon could be determined. It is, furthermore, demonstrated that biomolecules such as amino acids and proteins can be incorporated into the reverse micelles dissolved in supercritical xenon.  相似文献   

16.
Gold nanoparticles were employed to prepare shell cross-linked Pluronic micelles that exhibit a reversibly thermosensitive swelling/shrinking behavior. Two terminal hydroxyl groups of Pluronic F127 were thiol-functionalized to form self-assembling Pluronic micelles in aqueous solution with exposed -SH groups in an outer shell layer. The thiol groups present in the outer shell were cross-linked by gold nanoparticles synthesized through NaBH4 reduction of gold precursor anions. The resultant shell cross-linked gold-Pluronic micelles exhibited a temperature-dependent volume transition: their hydrodynamic diameter was changed from 157.1 +/- 15.6 nm at 15 degrees C to 53.4 +/- 5.5 nm at 37 degrees C as determined by dynamic light scattering. The critical micelle temperature measured by a pyrene solubilization technique suggested that the reversible swelling/shrinking behavior of the micelles was caused by hydrophobic interactions of cross-linked or grafted Pluronic copolymer chains in the micelle structure with increasing temperature. Transmission electron microscopy directly revealed that the shell cross-linked micelles were indeed produced by gold nanoparticles covalently clustered on the surface. These novel self-assembled organic/inorganic hybrid micelles would hold great potential for diagnostic and therapeutic applications.  相似文献   

17.
分别合成了苯硼酸修饰的嵌段聚合物聚乙二醇-b-聚(天冬氨酸-co-天冬酰氨基苯硼酸)[PEG-b-P(Asp-co-AspPBA)]和含有二硫键及多元二醇的小分子3,3'-二硫代二[1,2(S)-丙二醇](DTBPD). 以DTBPD为小分子交联剂, 通过二醇单元与苯硼酸之间的共价酯化作用, 诱导PEG-b-P(Asp-co-AspPBA)自组装形成以苯硼酸环酯为核、 PEG为壳的交联胶束. 利用核磁共振氢谱和激光光散射对胶束的结构进行了表征, 并分别测定了该胶束在葡萄糖和氧化-还原试剂二硫苏糖醇(DTT)刺激下的响应行为. 结果表明, DTBPD可与聚合物链上的苯硼酸形成苯硼酸环酯, 通过交联作用诱导聚合物形成胶束. 交联度不同时, 胶束对于外界刺激(葡萄糖和DTT的响应行为也不同: 随着DTT和葡萄糖浓度的增加, 交联度高的胶束只发生响应性溶胀, 交联度低的胶束则先溶胀, 之后溶胀程度较大的部分胶束则发生解体, 导致胶束的平均粒径减小.  相似文献   

18.
Polymerization of anionic wormlike micelles   总被引:3,自引:0,他引:3  
Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.  相似文献   

19.
The formation of reverse micelles of amphiphilic diblock copolymers of styrene and 2-vinylpyridine in selective (for one of the blocks) solvent (toluene) is studied by dynamic light scattering and atomic force and transmission electron microscopies, as well as by absorption spectroscopy and X-ray photoelectron spectroscopy techniques. It is revealed that the behavior of micelles of block copolymers with different ratios of block lengths and absolute molecular masses in solution is fundamentally different depending on the amount of added metal salt. The possibility of controlled variations in the characteristic sizes of two-dimensional ordered ensembles of micelles on the surface of silicon wafers is demonstrated. It is shown that, in some cases, the distance between the centers of micelles in ensemble depends on the concentration of copolymer solution and the amount of metal salt preliminarily added to the solution.  相似文献   

20.
Shell cross-linked (SCL) thermoresponsive hybrid micelles consisting of a cross-linked thermoresponsive hybrid hydrophilic shell and a hydrophobic core domain were synthesized from poly(N-isopropylacrylamide-co-3- (trimethoxysilyl)propyl methacrylate)-b-polymethyl methacrylate (P(NIPAAm-co-MPMA)-b-PMMA) amphiphilic block copolymers. Transmission electron microscopy (TEM) images showed that the SCL micelles formed regularly globular nanoparticles. The SCL micelles showed reversible dispersion/aggregation in response to temperature cycles through an outer polymer shell lower critical solution temperature (LCST) for PNIPAAm at around 33 degrees C, observed by turbidity measurements and dynamic light scattering (DLS). The drug loading and in vitro drug release properties of the SCL micelles bearing a silica-reinforced PNIPAAm shell were further studied, which showed that the SCL micelles exhibited a much improved entrapment efficiency (EE) as well as a slower release rate which allowed the entrapped molecules to be slowly released over a much longer period of time as compared with pure PNIPAAm-b-PMMA micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号