共查询到20条相似文献,搜索用时 15 毫秒
1.
Gareth Jones Peter Willett Robert C. Glen 《Journal of computer-aided molecular design》1995,9(6):532-549
Summary A genetic algorithm (GA) has been developed for the superimposition of sets of flexible molecules. Molecules are represented by a chromosome that encodes angles of rotation about flexible bonds and mappings between hydrogen-bond donor proton, acceptor lone pair and ring centre features in pairs of molecules. The molecule with the smallest number of features in the data set is used as a template, onto which the remaining molecules are fitted with the objective of maximising structural equivalences. The fitness function of the GA is a weighted combination of: (i) the number and the similarity of the features that have been overlaid in this way; (ii) the volume integral of the overlay; and (iii) the van der Waals energy of the molecular conformations defined by the torsion angles encoded in the chromosomes. The algorithm has been applied to a number of pharmacophore elucidation problems, i.e., angiotensin II receptor antagonists, Leu-enkephalin and a hybrid morphine molecule, 5-HT1D agonists, benzodiazepine receptor ligands, 5-HT3 antagonists, dopamine D2 antagonists, dopamine reuptake blockers and FKBP12 ligands. The resulting pharmacophores are generated rapidly and are in good agreement with those derived from alternative means. 相似文献
2.
3.
We propose a conformational search method to find a global minimum energy structure for protein systems. The simulated annealing is a powerful method for local conformational search. On the other hand, the genetic crossover can search the global conformational space. Our method incorporates these attractive features of the simulated annealing and genetic crossover. In the previous works, we have been using the Monte Carlo algorithm for simulated annealing. In the present work, we use the molecular dynamics algorithm instead. To examine the effectiveness of our method, we compared our results with those of the normal simulated annealing molecular dynamics simulations by using an α-helical miniprotein. We used genetic two-point crossover here. The conformations, which have lower energy than those obtained from the conventional simulated annealing, were obtained. 相似文献
4.
5.
Petrella RJ 《Journal of computational chemistry》2011,32(11):2369-2385
A novel molecular structure prediction method, the Z Method, is described. It provides a versatile platform for the development and use of systematic, grid‐based conformational search protocols, in which statistical information (i.e., rotamers) can also be included. The Z Method generates trial structures by applying many changes of the same type to a single starting structure, thereby sampling the conformation space in an unbiased way. The method, implemented in the CHARMM program as the Z Module, is applied here to an illustrative model problem in which rigid, systematic searches are performed in a 36‐dimensional conformational space that describes the relative positions of the 10 secondary structural elements of the protein CheY. A polar hydrogen representation with an implicit solvation term (EEF1) is used to evaluate successively larger fragments of the protein generated in a hierarchical build‐up procedure. After a final refinement stage, and a total computational time of about two‐and‐a‐half CPU days on AMD Opteron processors, the prediction is within 1.56 Å of the native structure. The errors in the predicted backbone dihedral angles are found to approximately cancel. Monte Carlo and simulated annealing trials on the same or smaller versions of the problem, using the same atomic model and energy terms, are shown to result in less accurate predictions. Although the problem solved here is a limited one, the findings illustrate the utility of systematic searches with atom‐based models for macromolecular structure prediction and the importance of unbiased sampling in structure prediction methods. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 相似文献
6.
We previously described a new conformational search method, termed low-mode search (LMOD), and discussed its utility for conformational searches performed on cycloalkanes and a cyclic penta-peptide. 1 In this report, we discuss a rigorous implementation of mode following (c-LMOD) for conformational searching, and we demonstrate that for a conformational search involving cycloheptadecane, this rigorous implementation is capable of finding all of the previously known structures. To the best of our knowledge, this is the first computational proof that mode following can be used for conformational searches conducted on a complex molecular system. We show, however, that, as expected, it is generally inefficient to perform a conformational search in this manner. Nonetheless, c-LMOD has been shown to be an excellent method for conducting conformational analyses involving conformational interconversions, where the location of saddle points is important. We also describe refinement to our original LMOD procedure (l-LMOD) and discuss its utility for a difficult conformational search problem, namely locating the global minimum energy conformation of C39H80. For this search, l-LMOD combined with limited torsional Monte Carlo movement was able to locate the lowest energy structures yet reported, and significantly outperformed a pure torsional Monte Carlo and a genetic algorithm-based search. Furthermore, we also demonstrate the utility of l-LMOD combined with random translation/rotation of a ligand for the extremely difficult problem of docking flexible ligands into flexible protein binding sites on a system that includes 9-deaza-guanine-based inhibitors docked into the flexible biding site of PNP. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1671–1684, 1999 相似文献
7.
J. M. R. Parker 《Journal of computational chemistry》1999,20(9):947-955
Currently, several energy functions and conformational search methods have been developed that are based on the observed distribution of phi and psi angles in protein structures. The definition of phi and psi angles is directly related to the orientation of the peptide plane (CA CO NH CA). Starting from one conformation and rotating a single peptide plane, the angles psi for one residue and phi for the consecutive residue that are linked by the peptide plane, display a continuous range of values within one global conformation. When peptide plane rotation is analyzed in several different conformations generated from a restricted conformation database, a large number of these conformations are related. Based on these observations, a new simplified all-atom representation for protein folding simulations is presented where only one torsion angle variable is required for each residue. The underlying theme of this article is that conformational search methods using phi and psi torsion space, search through many redundant conformations. These conformations are related by anticorrelated torsion changes of peptide plane rotations. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 947–955, 1999 相似文献
8.
Christoph Grebner Johannes Becker Svetlana Stepanenko Bernd Engels 《Journal of computational chemistry》2011,32(10):2245-2253
Efficient conformational search or sampling approaches play an integral role in molecular modeling, leading to a strong demand for even faster and more reliable conformer search algorithms. This article compares the efficiency of a molecular dynamics method, a simulated annealing method, and the basin hopping (BH) approach (which are widely used in this field) with a previously suggested tabu‐search‐based approach called gradient only tabu search (GOTS). The study emphasizes the success of the GOTS procedure and, more importantly, shows that an approach which combines BH and GOTS outperforms the single methods in efficiency and speed. We also show that ring structures built by a hydrogen bond are useful as starting points for conformational search investigations of peptides and organic ligands with biological activities, especially in structures that contain multiple rings. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 相似文献
9.
M. F. O'Donohue E. Minasian S. J. Leach A. W. Burgess H. R. Treutlein 《Journal of computational chemistry》2000,21(6):446-461
We report a new technique for the efficient analysis and visualization of peptide and protein conformations and conformational relationships, which we have implemented in a computer program called PEPCAT. PEPCAT (an abbreviation for Peptide Conformational Analysis Tool) provides a simple, graphical, and flexible framework that allows the user to define a specific structural feature or juxtaposition of amino acids and to follow the fate of the motif during a molecular dynamics simulation. Here we describe the PEPCAT analysis of the effects of environmental and chemical modifications on conformational preferences of a regulator of hemopoiesis, namely the pentapeptide pyro‐EEDCK, and of a conformational transition in the immunosuppressant drug cyclosporin A. PEPCAT, however, can be applied to the conformational analysis of peptides and proteins in general. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 446–461, 2000 相似文献
10.
Three genetic algorithm programs, GAP 1.0, 2.0, and 3.0, were used in conjunction with the ECEPP/2 force field to search the conformation space of [Met]-enkephalin. Each program was proficient at quickly finding many diverse low-energy conformers. Conformer populations displayed a variety of secondary structure motifs including those likely to bind to the μ-opioid receptor. Limitations in the program's sampling behavior are discussed and method improvements are suggested. Although still in a developmental stage, the GAP programs represent a useful addition to conformational search techniques when no a priori structural information is available. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1329–1342, 1999 相似文献
11.
Michal Vieth Jonathan D. Hirst Charles L. Brooks III 《Journal of computer-aided molecular design》1998,12(6):563-572
We compare the low free energy structures of ten small, polar ligands in solution to their conformations in their respective receptor active sites. The solution conformations are generated by a systematic search and the free energies of representative structures are computed with a continuum solvation model. Based on the values of torsion angles, we find little similarity between low energy solution structures of small ligands and their active site conformations. However, in nine out of ten cases, the positions of 'anchor points' (key atoms responsible for tight binding) in the lowest energy solution structures are very similar to the positions of these atoms in the active site conformations. A metric that more closely captures the essentials of binding supports the basic premise underlying pharmacophore mapping, namely that active site conformations of small flexible ligands correspond to their low energy structures in solution. This work supports the efforts of building pharmacophore models based on the information present in solution structures of small isolated ligands. 相似文献
12.
A new conformational search program, HUNTER, connected with the force fields MMP2 and MM3(92) is presented. The program accepts all types of molecules with most different substructures, considers stereochemical facts, and covers conformational space efficiently and completely. The most important facilities are an automated analysis of the stereochemistry including topographical facts, a separate perturbation of the acyclic and cyclic parts of the molecule using modified corner flapping, and an incremental rotation around single bonds with fixed flap and rotation angles, respectively; an exclusion of high energy structures by simulated annealing; the choice of the conformer lowest in energy, which is new as an initial structure for the next sampling run; and the use of a reduced set of dihedral angles to define a conformation. A specifically devised graphic interface, SERVANT, is used to feed in and control all informations necessary for a program run and to visualize the results. Most of the parameters are user-defined and thereby allow a flexible search, including a search for the most stable diastereomer. The efficiency of the different parameter sets was tested in calculation with cycloundecane ( 12 ), (Z)-oct-3-ene ( 13 ), and sipholenol-A monoacetate ( 14 ). The best performance regarding the number of different low-energy conformers was achieved with 60° ( 14 ) and 90° flaps ( 12 ), respectively, including substituent correction for the cyclic parts, and with 105° ( 14 ) and 120° rotations ( 13 ), respectively, for the acyclic parts. In comparison to the stochastic search routine implemented in MM3(92), HUNTER performed two ( 12 ) to six ( 14 ) times better. © 1997 John Wiley & Sons, Inc. J Comput Chem 18: 1264–1281, 1997 相似文献
13.
We present a series of conformational search calculations on the aggregation of short peptide fragments that form fibrils similar to those seen in many protein mis-folding diseases. The proteins were represented by a face-centered cubic lattice model with the conformational energies calculated using the Miyazawa-Jernigan potential. The searches were performed using algorithms based on the Metropolis Monte Carlo method, including simulated annealing and replica exchange. We also present the results of searches using the tabu search method, an algorithm that has been used for many optimization problems, but has rarely been used in protein conformational searches. The replica exchange algorithm consistently found more stable structures then the other algorithms, and was particularly effective for the octamers and larger systems. 相似文献
14.
All‐atom sampling is a critical and compute‐intensive end stage to protein structural modeling. Because of the vast size and extreme ruggedness of conformational space, even close to the native structure, the high‐resolution sampling problem is almost as difficult as predicting the rough fold of a protein. Here, we present a combination of new algorithms that considerably speed up the exploration of very rugged conformational landscapes and are capable of finding heretofore hidden low‐energy states. The algorithm is based on a hierarchical workflow and can be parallelized on supercomputers with up to 128,000 compute cores with near perfect efficiency. Such scaling behavior is notable, as with Moore's law continuing only in the number of cores per chip, parallelizability is a critical property of new algorithms. Using the enhanced sampling power, we have uncovered previously invisible deficiencies in the Rosetta force field and created an extensive decoy training set for optimizing and testing force fields. © 2012 Wiley Periodicals, Inc. 相似文献
15.
O. V. Shishkin A. S. Polyakova O. V. Prezhdo S. M. Desenko V. D. Orlov Yu. T. Struchkov 《Russian Chemical Bulletin》1994,43(9):1587-1588
The electronic structure of 1,4-cyclohexadiene for various angles between the double bond planes has been calculated by the AM1 method. The effects of through-bond and through-space interactions, which result in flattening and unflattening, respectively, are oppositely directed. These effects are specified for various bending angles. In addition to steric factors, electronic factors affect the conformational flexibility of 1,4-cyclohexadiene.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1676–1677, September, 1994. 相似文献
16.
The recently reported geometrical algorithm to search the conformational space (GASCOS) scans conformational space exhaustively using an internal coordinate tree search. Using only geometrical operations and a set of criteria for eliminating chemically unreasonable atomic arrangements, the algorithm generates starting geometries for optimizations by molecular mechanics or by molecular orbital procedures. Up until now GASCOS has been used for linear structures, but an extension to cyclic structures is reported here. 相似文献
17.
Yanqing Yang Joseph Cheramy Dr. Martin Brehm Prof. Dr. Yunjie Xu 《Chemphyschem》2022,23(11):e202200161
Raman and Raman Optical Activity (ROA) spectra of N-acetyl-L-cysteine (NALC), a flexible chiral molecule, were measured in water and in methanol to evaluate the solvent effects. Two different solvation approaches, that is, the DFT based “clusters-in-a-liquid” solvent model and the ab initio molecular dynamics (AIMD) simulations, were applied to simulate the Raman and ROA spectra. Systematic conformational searches were carried out using a recently developed conformational searching tool, CREST, with the inclusion of polarizable continuum model of water and of methanol. The CREST candidates of NALC and the NALC-solvent complexes were re-optimized and their Raman and ROA simulations were done at the B3LYP−D3BJ/def2-TZVP and the B3LYP-aug-cc-pVDZ//cc-pVTZ levels. Also, AIMD simulations, which includes some anharmonic effects and all intermolecular interactions in solution, were performed. By empirically weighting the computed Raman and ROA spectra of each conformer, good agreements with the experimental data were achieved with both approaches, while AIMD offered some improvements in the carbonyl and in the low wavenumber regions over the static DFT approach. The pros and cons of these two different approaches for accounting the solvent effects on Raman and ROA of this flexible chiral system will also be discussed. 相似文献
18.
Flexible ligand docking using a genetic algorithm 总被引:7,自引:0,他引:7
C. M. Oshiro I. D. Kuntz J. Scott Dixon 《Journal of computer-aided molecular design》1995,9(2):113-130
Summary Two computational techniques have been developed to explore the orientational and conformational space of a flexible ligand within an enzyme. Both methods use the Genetic Algorithm (GA) to generate conformationally flexible ligands in conjunction with algorithms from the DOCK suite of programs to characterize the receptor site. The methods are applied to three enzyme-ligand complexes: dihydrofolate reductase-methotrexate, thymidylate synthase-phenolpthalein and HIV protease-thioketal haloperidol. Conformations and orientations close to the crystallographically determined structures are obtained, as well as alternative structures with low energy. The potential for the GA method to screen a database of compounds is also examined. A collection of ligands is evaluated simultaneously, rather than docking the ligands individually into the enzyme.Abbreviations GA
genetic algorithm; dhfr, dihydrofolate reductase
- mtx
methotrexate
- ts
thymidylate synthase
- fen
phenolphalein
- HIV
human immune deficiency virus
- hivp
HIV protease
- thk
thioketal haloperidol 相似文献
19.
L. B. Morales R. GarduoJurez J. M. AguilarAlvarado F. J. RiverosCastro 《Journal of computational chemistry》2000,21(2):147-156
We have developed and implemented a tabu search heuristic (TS) to determine the best energy minimum for oligopeptides. Our test molecule was Met‐enkephalin, a pentapetide that over the years has been used as a validation model for many global optimizers. The test potential energy function was ECEPP/3. Our tabu search implementation is based on assigning integer values to the variables to be optimized, and in facilitating the diversification and intensification of the search. The final output from the TS is treated with a local optimizer, and our best result competes both in quality and CPU time with those reported in the literature. The results indicate that TS is an efficient algorithm for conformational searches. We present a parallel TS version along with experimental results that show that this algorithm allows significant increases in speed. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 147–156, 2000 相似文献
20.
Siddhartha Laghuvarapu Yashaswi Pathak U. Deva Priyakumar 《Journal of computational chemistry》2020,41(8):790-799
Recent advances in artificial intelligence along with the development of large data sets of energies calculated using quantum mechanical (QM)/density functional theory (DFT) methods have enabled prediction of accurate molecular energies at reasonably low computational cost. However, machine learning models that have been reported so far require the atomic positions obtained from geometry optimizations using high-level QM/DFT methods as input in order to predict the energies and do not allow for geometry optimization. In this study, a transferable and molecule size-independent machine learning model bonds (B), angles (A), nonbonded (N) interactions, and dihedrals (D) neural network (BAND NN) based on a chemically intuitive representation inspired by molecular mechanics force fields is presented. The model predicts the atomization energies of equilibrium and nonequilibrium structures as sum of energy contributions from bonds (B), angles (A), nonbonds (N), and dihedrals (D) at remarkable accuracy. The robustness of the proposed model is further validated by calculations that span over the conformational, configurational, and reaction space. The transferability of this model on systems larger than the ones in the data set is demonstrated by performing calculations on selected large molecules. Importantly, employing the BAND NN model, it is possible to perform geometry optimizations starting from nonequilibrium structures along with predicting their energies. © 2019 Wiley Periodicals, Inc. 相似文献