首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
High-quality temperature-programmed desorption (TPD) measurements of n-butane from MgO(100) have been made for a large number of initial butane coverages (0-3.70 ML, ML-monolayers) and a wide range of heating ramp rates (0.3-10 K/s). We present a TPD analysis technique which allows the coverage-dependent desorption energy to be accurately determined by mathematical inversion of a TPD spectrum, assuming only that the preexponential factor (prefactor) is coverage independent. A variational method is used to determine the prefactor that minimizes the difference between a set of simulated TPD spectra and corresponding experimental data. The best fit for butane desorption from MgO is obtained with a prefactor of 10(15.7+/-1.6) s(-1). The desorption energy is 34.9+/-3.4 kJ/mol at 0.5-ML coverage, and varies with coverage approximately as Ed(theta)=34.5+0.566theta+8.37 exp(-theta/0.101). Simulations based on these results can accurately reproduce TPD experiments for submonolayer initial coverages over a wide range of heating ramp rates (0.3-10 K/s). Advantages and limitations of this method are discussed.  相似文献   

3.
The adsorption of monolayer and multilayer benzene on the Ag(111) surface was characterized using temperature programmed desorption (TPD). TPD spectra revealed two broad peaks at approximately 205 and approximately 150 K at submonolayer coverage and a sharper, multilayer peak at 140 K. Analysis of the coverage-dependent shape and shift of the two submonolayer peaks has resulted in their assignment to desorption from two different binding geometries on threefold-hollow sites with symmetries C(3v)(sigma d) and C(3v)(sigma v). The TPD peak analysis incorporated inter-adsorbate repulsive interaction that resulted from the local dipole moment at the adsorption site induced by the adsorbate-surface charge transfer bonding. The analysis has yielded desorption energies of 54.9 +/- 0.8 and 50.4 +/- 0.4 kJ/mol for the C(3v)(sigma d) and C(3v)(sigma v) configurations, respectively. The interface dipole and polarizability of the benzene-silver complex have been determined to be 5.4 +/- 1.8 D and 14 +/- 10 A3, respectively. Repulsive interactions in the monolayer were found to lower the desorption energy from the zero-coverage value by 14.8 kJ/mol. Leading edge analysis of the multilayer peak yielded a desorption energy of 40.9 +/- 0.7 kJ/mol.  相似文献   

4.
提出了TPD导数谱,并以理论TPD导数谱图为对象,讨论了TPD导数谱在提高分辨率,消除口音干扰及确定脱附级数等方面的特点,推导了由TPD一阶、二阶导数谱求算脱附活化能和指标因子和的数学方程式,并对其进行了验证。/  相似文献   

5.
The adsorption and desorption kinetics of N2 on porous amorphous solid water (ASW) films were studied using molecular beam techniques, temperature programed desorption (TPD), and reflection-absorption infrared spectroscopy. The ASW films were grown on Pt(111) at 23 K by ballistic deposition from a collimated H2O beam at various incident angles to control the film porosity. The experimental results show that the N2 condensation coefficient is essentially unity until near saturation, independent of the ASW film thickness indicating that N2 transport within the porous films is rapid. The TPD results show that the desorption of a fixed dose of N2 shifts to higher temperature with ASW film thickness. Kinetic analysis of the TPD spectra shows that a film thickness rescaling of the coverage-dependent activation energy curve results in a single master curve. Simulation of the TPD spectra using this master curve results in a quantitative fit to the experiments over a wide range of ASW thicknesses (up to 1000 layers, approximately 0.5 microm). The success of the rescaling model indicates that N2 transport within the porous film is rapid enough to maintain a uniform distribution throughout the film on a time scale faster than desorption.  相似文献   

6.
Reflection absorption infrared spectroscopy (RAIRS) and temperature programed desorption (TPD) have been used to probe the adsorption and desorption of ethanol on highly ordered pyrolytic graphite (HOPG) at 98 K. RAIR spectra for ethanol show that it forms physisorbed multilayers on the surface at 98 K. Annealing multilayer ethanol ices (exposures >50 L) beyond 120 K gives rise to a change in morphology before crystallization within the ice occurs. TPD shows that ethanol adsorbs and desorbs molecularly on the HOPG surface and shows four different species in desorption. At low coverage, desorption of monolayer ethanol is observed and is described by first-order kinetics. With increasing coverage, a second TPD peak is observed at a lower temperature, which is assigned to an ethanol bilayer. When the coverage is further increased, a second multilayer, less strongly bound to the underlying ethanol ice film, is observed. This peak dominates the TPD spectra with increasing coverage and is characterized by fractional-order kinetics and a desorption energy of 56.3+/-1.7 kJ mol(-1). At exposures exceeding 50 L, formation of crystalline ethanol is also observed as a high temperature shoulder on the TPD spectrum at 160 K.  相似文献   

7.
Bimetallic catalysts have demonstrated properties favorable for upgrading biofuel through catalytic hydrodeoxygenation. However, the design and optimization of such bimetallic catalysts requires the ability to construct accurate, predictive models of these systems. To generate a model that predicts the kinetic behavior of benzene adsorbed on Pt (1 1 1) and a Pt3Sn (1 1 1) surface alloy (Pt3Sn (1 1 1)), the adsorption of benzene was studied for a wide range of benzene coverages on both surfaces using density functional theory (DFT) calculations. The adsorption energy of benzene was found to correlate linearly with benzene coverage on Pt (1 1 1) and Pt3Sn (1 1 1); both surfaces exhibited net repulsive lateral interactions. Through an analysis of the d-band properties of the metal surface, it was determined that the coverage dependence is a consequence of the electronic interactions between benzene and the surface. The linear coverage dependence of the adsorption energy allowed us to quantify the influence of the lateral interactions on the heat of adsorption and temperature programmed desorption (TPD) spectra using a mean-field model. A comparison of our simulated TPD to experiment showed that this mean-field model adequately reproduces the desorption behavior of benzene on Pt (1 1 1) and Pt3Sn (1 1 1). In particular, the TPD correctly exhibits a broadening desorption peak as the initial coverage of benzene increases on Pt (1 1 1) and a low temperature desorption peak on Pt3Sn (1 1 1). However, due to the sensitivity of the TPD peak temperature to the desorption energy, precise alignment of experimental and theoretical TPD spectra demands an accurate calculation of the adsorption energy. Therefore, an analysis of the effect of the exchange-correlation functional on TPD modeling is presented. Through this work, we show the necessity of incorporating lateral interactions into theoretical models in order to correctly predict experimental behavior.  相似文献   

8.
Temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) are used to investigate the crystallization kinetics and measure the excess free energy of metastable amorphous solid water films (ASW) of H(2)O and D(2)O grown using molecular beams. The desorption rates from the amorphous and crystalline phases of ASW are distinct, and as such, crystallization manifests can be observed in the TPD spectrum. The crystallization kinetics were studied by varying the TPD heating rate from 0.001 to 3 K/s. A coupled desorption-crystallization kinetic model accurately simulates the desorption spectra and accurately predicts the observed temperature shifts in the crystallization. Isothermal crystallization studies using RAIRS are in agreement with the TPD results. Furthermore, highly sensitive measurements of the desorption rates were used to determine the excess free energy of ASW near 150 K. The excess entropy obtained from these data is consistent with there being a thermodynamic continuity between ASW and supercooled liquid water.  相似文献   

9.
The interaction between adsorbates is a key issue in surface science, because these interactions can influence strongly the properties of chemisorbed species with consequences for the thermodynamics and kinetics of surface processes. The simplest representation of adsorbate-adsorbate interactions is based on the assumption that all interactions are pairwise additive. This approach has been satisfactorily used in the modeling of temperature-programmed desorption (TPD) spectra using both continuum and Monte Carlo methods. However, the energies estimated within the pairwise approximation have never been compared to the energies calculated using density functional theory (DFT) methods. We demonstrate that the pairwise additive potential approximation is indeed a good representation of the adsorbate-adsorbate interactions, and that we do not need to include three-body interactions or higher-order terms to estimate the perturbation of the adsorption energy of an adsorbate by the presence of other coadsorbates. Moreover, we show for the first time how DFT can be used to explain the desorption features that one finds in TPD experiments, thus linking the TPD desorption features with actual microscopic configurations.  相似文献   

10.
沸石分子筛因其特殊的孔道结构而致使其TPD谱图的分析比其它催化剂更为困难,目前尚无一种切实可行的理论分析方法。本文发展了一种较为简单的模拟分子筛上TPD谱图的MonteCarlo方法,模拟结果表明,在同一组脱附动力学参数下,沸石分子筛上的峰形和峰位置与其它催化剂都有明显的差异,并且峰温的差别与脱附活化能和指前因子有关。同时表明,对于普通催化剂可以根据峰最大时的覆盖度θ_M来判断脱附级数,而对于沸石分子筛,θ_M却随E_d线性变化。  相似文献   

11.
The IR spectra of surface compounds observed in the course of the temperature-programmed desorption (TPD) of NOx and the TPD spectra are compared. The high-temperature peaks of desorption are related to the decomposition of surface nitrites and nitrates. The low-temperature peaks of NOx desorption with maximums below 140°C are caused by the decomposition of surface nitrosyls. On the heating of surface nitrosyls, the following two reaction paths are possible: desorption at low temperatures and conversion into nitrates. The shape of the TPD spectra of NO depends on the phase composition of test samples. The transition of a tetragonal phase into a monoclinic one occurred upon the surface dehydroxylation of polycrystalline particles with the formation of particles with a tetragonal nucleus and a monoclinic crust. This transition is reversible. The cooling of a sample in a moist atmosphere leads to the transition of the monoclinic crust to the tetragonal phase.  相似文献   

12.
Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) have been used to perform a detailed investigation of the adsorption of water on highly oriented pyrolytic graphite (HOPG) at 90 K. RAIRS shows that water is physisorbed on HOPG at all coverages, as expected. Experiments at higher surface temperatures show marked changes in the O-H stretching region of the spectrum which can be assigned to the observation of the amorphous to crystalline ice phase transition. The infrared signature of both phases of solid water has been determined on HOPG and can be used to identify the phase of the ice. TPD spectra show the desorption of multilayers of crystalline ice. At high exposures a small bump appears in the TPD spectrum, on the low temperature side of the main peak, which is attributed to the amorphous to crystalline phase transition. At very low exposures of water, it is possible to distinguish the desorption of water from two- and three-dimensional islands and hence to determine the growth mode of water on the HOPG surface. Isothermal TPD studies have also been performed and show that the desorption of water does not obey perfect zero-order kinetics. Desorption orders, derived directly from the TPD spectra, confirm this observation. Desorption energies and preexponential factors have also been determined for this adsorption system.  相似文献   

13.
The interactions of cyanide species with a copper (001) surface were studied with temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Adsorbed cyanide species (CN(a)) undergo recombinative desorption evolving molecular cyanogen (C(2)N(2)). As the adsorbed CN species charge upon adsorption, mutually repulsive dipolar interactions lead to a marked desorption energy reduction with increasing CN(a) coverages. Two new TPD analysis approaches were developed, which used only accurately discernible observables and which do not assume constant desorption energies, E(d), and pre-exponential values, ν. These two approaches demonstrated a linear variation of E(d) with instantaneous coverage. The first approach involved an analysis of the variations of desorption peak asymmetry with initial CN coverages. The second quantitative approach utilized only temperatures and intensities of TPD peaks, together with deduced surface coverages at the peak maxima, also as a function of initial surface coverages. Parameters derived from the latter approach were utilized as initial inputs for a comprehensive curve fit analysis technique. Excellent fits for all experimental desorption curves were produced in simulations. The curve fit analysis confirms that the activation energy of desorption of 170-180 kJ/mol at low coverage decreases by up to 14-15 kJ/mol at CN saturation.  相似文献   

14.
The interaction of acetone with single wall carbon nanotubes (SWCNTs) at low temperatures was studied by a combination of temperature programmed desorption (TPD) and dispersion-augmented density-functional-based tight binding (DFTB-D) theoretical simulations. On the basis of the results of the TPD study and theoretical simulations, the desorption peaks of acetone can be assigned to the following adsorption sites: (i) sites with energy of approximately 75 kJ mol (-1) ( T des approximately 300 K)endohedral sites of small diameter nanotubes ( approximately 7.7 A); (ii) sites with energy 40-68 kJ mol (-1) ( T des approximately 240 K)acetone adsorption on accessible interstitial, groove sites, and endohedral sites of larger nanotubes ( approximately 14 A); (iii) sites with energy 25-42 kJ mol (-1) ( T des approximately 140 K)acetone adsorption on external walls of SWCNTs and multilayer adsorption. Oxidatively purified SWCNTs have limited access to endohedral sites due to the presence of oxygen functionalities. Oxygen functionalities can be removed by annealing to elevated temperature (900 K) opening access to endohedral sites of nanotubes. Nonpurified, as-received SWCNTs are characterized by limited access for acetone to endohedral sites even after annealing to elevated temperatures (900 K). Annealing of both purified and as-produced SWCNTs to high temperatures (1400 K) leads to reduction of access for acetone molecules to endohedral sites of small nanotubes, probably due to defect self-healing and cap formation at the ends of SWCNTs. No chemical interaction between acetone and SWCNTs was detected for low temperature adsorption experiments. Theoretical simulations of acetone adsorption on finite pristine SWCNTs of different diameters suggest a clear relationship of the adsorption energy with tube sidewall curvature. Adsorption of acetone is due to dispersion forces, with its C-O bond either parallel to the surface or O pointing away from it. No significant charge transfer or polarization was found. Carbon black was used to model amorphous carbonaceous impurities present in as-produced SWCNTs. Desorption of acetone from carbon black revealed two peaks at approximately 140 and approximately 180-230 K, similar to two acetone desorption peaks from SWCNTs. The characteristic feature of acetone desorption from SWCNTs was peak at approximately 300 K that was not observed for carbon black. Care should be taken when assigning TPD peaks for molecules desorbing from carbon nanotubes as amorphous carbon can interfere.  相似文献   

15.
The thermodesorption spectra of hydrogen from coprecipitated catalysts (70-x)NiO-xMgO-30Al(2)O(3) (x = 0-50%(wt)) are reported. The catalysts were calcined at 400 degrees C and reduced with H(2) at 20-800 degrees C and for 3 h at 800 degrees C. NiO reduction degree was between 49.3 and 92.1%. The active surface areas changed from 8.4 to 32.4 m(2)/g whereas mean size of nickel crystallites was between 3.7 and 9.7 nm. The TPD spectra were next analyzed in order to determine the adsorption energy distributions functions. To obtain these functions a theoretical model of adsorption/desorption kinetics based on the statistical rate theory (SRT) was applied. This approach allows for determination of the adsorption energy at nonequilibrium conditions as well as at quasiequilibrium conditions. The resulting distribution functions reveal the presence of two main bands of adsorption energy. Some correlation is found between the determined distributions of adsorption energy and the size of nickel crystallites determined using the XRD method. The presence of MgO favors creation of high energy adsorption sites on Ni crystallites.  相似文献   

16.
Desorption energy distributions were calculated for temperature-programmed desorption (TPD) of ammonia from H zeolites of different type by means of regularization. This method does not require any limiting assumptions about the distribution function. It could be shown that the desorption energy distributions obtained are nearly independent of the experimental conditions and therefore they should represent a suitable measure for the distribution of the strength of acidic sites. The calculated desorption energy distributions for the ammonia desorption from the isolated bridging SiOHAl groups of H zeolites of different type significantly differ from each other in shape. The increase of the desorption energy of the main range of the distribution functions correlates well with the increase of the average acid strength of the SiOHAl groups with decreasing Al content of the zeolites.  相似文献   

17.
The adsorption and desorption of n-hexane over Zeolite-5A has been investigated as a function of loading using simultaneous Fourier transform infrared (FTIR)-temperature-programmed desorption (TPD) measurements. The TPD profiles show a second peak developing at lower temperatures when loading exceeds 16 hexane molecules per Zeolite-5A unit cell or two molecules per alpha-cavity of the Zeolite-5A structure. The infrared spectra rule out two types of adsorption sites as the origin of the two peaks in the TPD. Changes in the conformation of the adsorbed hexane as a function of loading and temperature were followed by monitoring the position of the methylene stretching modes in the infrared spectra. With increasing loading, the adsorbed hexane adopts a stretched trans conformation. These changes occur at loading levels below 12 hexane molecules per Zeolite-5A unit cell. No change is observed above this loading, ruling out any conformational change at loadings where the second peak is seen in the TPD. The second peak in the TPD arises, therefore, from a combination of steric repulsion and loss of translational entropy.  相似文献   

18.
Kinked-stepped, high Miller index surfaces of metal crystals are chiral and, therefore, exhibit enantiospecific properties. Previous temperature-programmed desorption (TPD) spectra have shown that the desorption energies of R-3-methylcyclohexanone (R-3-MCHO) on the chiral Cu(643)(R) and Cu(643)(S) surfaces are enantiospecific (J. Am. Chem. Soc. 2002, 124, 2384). Here, a comparison of the TPD spectra from Cu(111), Cu(221), Cu(533), Cu(653)(R&S), and Cu(643)(R&S) surfaces reveals that the enantiospecific desorption occurs from the chiral kink sites on the Cu(643) surfaces. Titration of the chiral kink sites with I atoms confirms this assignment of desorption features in the TPD spectra. Finally, the enantiospecific difference in the desorption energies of R- and S-3-MCHO has been used as the basis for demonstration of an enantioselective, kinetic separation of racemic 3-MCHO into its purified components during adsorption and desorption on the Cu(643)(R&S) surfaces.  相似文献   

19.
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the adsorption of methanol (CH(3)OH) on the highly oriented pyrolytic graphite (HOPG) surface. RAIRS shows that CH(3)OH is physisorbed at all exposures and that crystalline CH(3)OH can be formed, provided that the surface temperature and coverage are high enough. It is not possible to distinguish CH(3)OH that is closely associated with the HOPG surface from CH(3)OH adsorbed in multilayers using RAIRS. In contrast, TPD data show three peaks for the desorption of CH(3)OH. Initial adsorption leads to the observation of a peak assigned to the desorption of a monolayer. Subsequent adsorption leads to the formation of multilayers on the surface and two TPD peaks are observed which can be assigned to the desorption of multilayer CH(3)OH. The first of these shows a fractional order desorption, assigned to the presence of hydrogen bonding in the overlayer. The higher temperature multilayer desorption peak is only observed following very high exposures of CH(3)OH to the surface and can be assigned to the desorption of crystalline CH(3)OH.  相似文献   

20.
Hydrogen sorption in the nanoporous nickel phosphates VSB-1 and VSB-5 has been studied with a combination of BET, temperature programmed desorption (TPD), and inelastic neutron scattering (INS) measurements. H(2) BET isotherms for VSB-1 are similar to those seen in nanoporous zeolites, while VSB-5 adsorbs substantially more hydrogen due to a steep initial uptake at low partial pressures. TPD data show that hydrogen interacts strongly with VSB-5, with desorption peaks at 109 and 149 K in a nitrogen flow, whereas the absence of similar peaks for VSB-1 suggests a weaker interaction. INS spectra of the rotational tunnel transition of the adsorbed H(2) also reveal a strong interaction with the VSB-5 host. These data strongly suggest the existence of coordinatively unsaturated Ni(2+) sites accessible to H(2) molecules in the pores of VSB-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号