首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton magnetic resonance (1H magnetic resonance imaging (MRI)) images of human trabecular bone were acquired and discussed for two samples with different porosity. Three-dimensional 3D Spin Echo (3D SE) and Multi-Slice Multi-Echo (MSME) pulse sequences were examined. A very high slice resolution of (38 microm)2 was achieved (MSME). The intensity histograms were found useful for the characterization of the bone porosity. A spatial distribution of the spin-spin relaxation time T2 was monitored with the MSME pulse program. The work demonstrates the great potential of the proton MRI technique in the study of the trabecular bone morphology.  相似文献   

2.
Longitudinal and transverse NMR relaxation of 1H nuclei were studied in vitro on fresh animal femur samples. A large number of data points were taken, starting at 100 micros for T(1) by inversion-recovery, at 200 micros for T(2) by single-echo sequences, and at 600 micros for T(2) by CPMG echo-trains. Quasi-continuous distributions of relaxation times were computed, giving wide distributions for all samples. Bulk marrow removed from the medullary cavity showed T(2) distributions from about 20 ms to 600 ms and T(1) distributions from about 40 ms to 2 s. The 1H nuclei in trabecular bone samples, where marrow is confined, may show long tails for T(2) at relaxation times down to 250 micros, the origin of which is still not known. These tails are absent in bulk marrow from the medullary cavity. The differences observed in T(1) distributions among trabecular bone samples are in accordance with the different marrow compositions. Discrete exponential fits were computed also, and in most cases four discrete exponential components were required to fit the experimental data adequately. However, the discrete components do not seem to correspond to any physically distinguishable separate compartments.  相似文献   

3.
The effects of bone on marrow relaxation in the trabecular volume of the most proximal 3 cm in the left tibia were studied with a RF-spoiled gradient echo MRI protocol on a 1.0 T MR unit. The MR measurements were performed on six healthy volunteers, and repeated within one month in order to assess the precision of the method. In the same subjects, the area bone mineral density (bmd, g/cm2) was measured at the left proximal femur using dual-energy X-ray absorptiometry. The calcaneus of the same side was examined with quantitative ultrasound. The marrow T21 relaxation deviated from a mono-exponential decay, and resembled the decay of subcutaneous fat. The shape of the relaxation curve reflected the presence of several spectral components in bone marrow, and was further influenced by the amount and structure of the surrounding trabecular bone. The bone marrow decays showed substantially reduced inter-subject variability after normalisation of the marrow data fit parameters to corresponding values for s.c. fat. This suggests the use of an internal adipose tissue reference in order to correct for diet-related variations of marrow T21 estimates. The mean relative precision of the MR measurements was between 5% and 10% depending on the data fit model. Moderate-to-strong correlations between DXA bmd indices in the proximal femur and MR parameters were found (rmax = −0.96; p < 0.01), while ultrasound-derived measures of bone strength measured on the calcaneus demonstrated significantly weaker correlations to the MR parameters (rmax = −0.78; p > 0.05). The method employed in this study showed reasonable precision and a moderate to good correlation compared to other bone parameters derived at the same extremity, and is a promising tool for the use on patients.  相似文献   

4.
Phosphorus-31 spin-lattice relaxation, both in the laboratory (B(0)=4.7 T) and rotating frame (B(1)=2.2 mT), was studied in the following samples: mineral of whole human bone (samples B1-B6), apatite prepared from bone (BHA), natural brushite (BRU), synthetic hydroxyapatite hydrated (HAh) and calcined (HAc), and synthetic carbonatoapatite of type B (CHA-B) with 9 wt% of CO(3)(2-). The T(1)(P) relaxation time was determined directly using the saturation recovery technique, while the T(1 rho)(P) relaxation time was measured via (1)H-->(31)P CP by incrementing the (31)P spin-lock. In order to avoid an effect of magic-angle spinning (MAS) on CP and relaxation, the experiments were carried out on static samples. The (31)P spin-lattice relaxation was discussed for trabecular and cortical bone tissue from adult subjects in comparison to the synthetic mineral standards. None of the reference materials has matched accurately the relaxation behaviour of the bone mineral. The most striking differences between the examined substances were observed for T(1)(P), which for human bone was sample dependent and appeared in the range 55-100 s, while for HAh, HAc, and CHA-B was 7.2, 10.0, and 25.8 s, respectively. Possible reasons of so large relaxation diversity were discussed. It has been suggested that T(1)(P) of apatites is to some extent dependent on the concentration of the structural hydroxyl groups, and this in turn is controlled by the material crystallinity. It was also found that T(1)(P) decreased on hydration by ca. 30%. For T(1rho)(P), both its magnitude and dependence on the CP contact time gave useful structural information. The dehydrated samples (HAc and BHA) had long T(1 rho)(P) over 250 ms. Those, which contained water, either structural (BRU) or adsorbed on the crystal surface (HAh, CHA-B, and B1-B6), had shorter T(1 rho)(P) below 120 ms. It was concluded that the effect of water on T(1 rho)(P) is much more pronounced than on T(1)(P). The interpretation has involved P-OH groups and adsorbed water, which cover the apatite crystal surface.  相似文献   

5.
他得安  王威琪 《应用声学》2013,32(3):199-204
超声背散射法评价松质骨状况及诊断骨质疏松症是近年来医学超声领域内的研究热点之一,现已取得了显著的进展。本文将介绍近年来超声背散射法及其参量评价松质骨状况的研究进展,并分析超声背散射相关参量频谱质心偏移量(SCS)和平均骨小梁间距(TbSp)与骨矿密度(BMD)的相关性。研究结果表明,超声背散射参量与BMD有较高的相关性。最后提出了将来研究中需要努力的方向。  相似文献   

6.
MR-Relaxation (MRR) of 1H nuclei and MR-Cryoporometry (MRC) are combined to assess their feasibility and their potential in the study of bone microstructure. In principle, both techniques are able to give information on the structure of the pore space confining the fluids. Cow femur samples were carefully cored and cleaned in order to remove the natural fluids inside. For MRR analysis quasi-continuous distributions of T(1) and T(2) were obtained on samples fully saturated with water. Cyclohexane was used as a saturating fluid for MRC analysis. All T(1) and T(2) quasi-continuous distributions of water confined in bone samples are more than three decades wide, showing sufficient details to differentiate the samples. Pore size distributions obtained by MRC also differentiate the samples showing different characteristics of the pore space structure in the range of the highest sensitivity of the method (typically 3 to 100 nm, mesopore range). In particular, in samples where MRR shows a large fraction of signal with relaxation times below 10(2) ms, MRC indicates a large fraction of pore volume with pore sizes in the mesopore range.  相似文献   

7.
Volume selective magnetic resonance (MR) proton spectroscopy was used to investigate the haemopoietic (iliac bone) and fatty bone marrow (tibia) in patients with leukemia and polycythaemia vera. Selective measurements of the relaxation times T1 and T2 for the “water” and “fat” resonances in the bone marrow spectra were performed. Nine patients with acute leukemia and three patients with chronic leukemia were examined at diagnosis. Three patients with acute leukemia in remission were also examined. Five of the leukemic patients had follow-up examinations performed in relation to chemotherapeutic treatment. Nine patients with polycythaemia vera and 21 normal control subjects were examined with identical methods for comparison. All patients had bone marrow biopsies performed prior to every MR examination. Significant differences could be detected in the spectral patterns from iliac bone marrow in patients with leukemia at diagnosis compared to the healthy normal controls. The “relative water content” was increased in the iliac bone marrow spectra of the leukemic patients compared to the normal subjects, which indicates an increase in the amount of haemopoietic tissue and a corresponding decrease in marrow fat content. The T1 relaxation times of the “water” resonance in the spectra from the iliac bone marrow of the leukemic patients were significantly prolonged at diagnosis, compared to the normal controls and the patients with polycythaemia vera. After chemotherapeutic induction of remission, the spectra from the iliac bone marrow in the patients with leukemia resembled normal spectra. Four leukemic patients had abnormal spectra from the tibial bone marrow and one patients showed early changes in tibial marrow during chemotherapeutic treatment, before any major changes could be detected in the iliac bone marrow.  相似文献   

8.
The MAGSUS imaging technique has been shown to provide insights into the distribution of the macroscopic and microscopic static magnetic field without requiring further data processing. Applications of the MAGSUS technique on bone marrow are reported in more detail in this article. Effects of the superposition of water and lipid signals and of considerable transverse relaxation on MAGSUS imaging are demonstrated, and adapted imaging parameters are presented. Examples of applications on marrow with different physiological and pathological compositions and different locations are shown. Appropriate adjustments for a reliable estimation of the trabecular density in peripheral yellow marrow and for an assessment of the field distribution in hemopoietic red marrow are reported. Osteoporotic peripheral marrow with reduced amount of trabecular structures and alterations due to osteodystrophia deformans can be simply revealed by this method. An estimation of the trabecular density can also be performed by MAGSUS in vertebral bodies of hematologically unaffected persons, but the interindividually differing amount of paramagnetic depositions in the marrow (e.g., hemosiderin) must be taken into account.  相似文献   

9.
In vitro as well as in vivo studies have shown prolonged T1 relaxation times in patients with acute leukemia. The mechanism behind this finding is not known. In order to evaluate if this was specific for leukemia we examined eight patients with polycythemia vera, representing a condition with a rather benign bone marrow neoplasia. In this group of patients we found prolonged T1 relaxation times but normal T2 relaxation times. This may indicate that the prolonged T1 relaxation time seen in leukemic bone marrow is not due to the malignant cell per se.  相似文献   

10.
Despite significant differences between bone tissues and other porous media such as oilfield rocks, there are common features as well as differences in the response of NMR relaxation measurements to the internal structures of the materials. Internal surfaces contribute to both transverse (T2) and longitudinal (T1) relaxation of pore fluids, and in both cases the effects depend on, among other things, local surface-to-volume ratio (S/V). In both cases variations in local S/V can lead to distributions of relaxation times, sometimes over decades. As in rocks, it is useful to take bone data under different conditions of cleaning, saturation, and desaturation. T1 and T2 distributions are computed using UPEN. In trabecular bone it is easy to see differences in dimensions of intertrabecular spaces in samples that have been de-fatted and saturated with water, with longer T1 and T2 for larger pores. Both T1 and T2 distributions for these water-saturated samples are bimodal, separating or partly separating inter- and intratrabecular water. The T1 peak times have a ratio of from 10 to 30, depending on pore size, but for the smaller separations the distributions may not have deep minima. The T2 peak times have ratios of over 1000, with intratrabecular water represented by large peaks at a fraction of a ms, which we can observe only by single spin echoes. CPMG data show peaks at about a second, tapering down to small amplitudes by a ms. In all samples the free induction decay (FID) from an inversion-recovery (IR) T1 measurement shows an approximately Gaussian (solid-like) component, exp[-1/2 (T/TGC), with TGC approximately 11.7+/-0.7 micros (GC for "Gaussian Component"), and a liquid-like component (LLC) with initially simple-exponential decay at the rate-average time T(2-FID) for the first 100 micros. Averaging and smoothing procedures are adopted to derive T(2-FID) as a function of IR time and to get T1 distributions for both the GC and the LLC. It appears that contact with the GC, which is presumed to be 1H on collagen, leads to the T2 reduction of at least part of the LLC, which is presumed to be water. Progressive drying of the cleaned and water-saturated samples confirms that the long T1 and T2 components were in the large intertrabecular spaces, since the corresponding peaks are lost. Further drying leads to further shortening of T2 for the remaining water but eventually leads to lengthening of T1 for both the collagen and the water. After the intertrabecular water is lost by drying, T1 is the same for GC and LLC. T(2-FID) is found to be roughly 320/alpha micros, where alpha is the ratio of the extrapolated GC to LLC, appearing to indicate a time tau of about 320 micros for 1H transverse magnetization in GC to exchange with that of LLC. This holds for all samples and under all conditions investigated. The role of the collagen in relaxation is confirmed by treatment to remove the mineral component, observing that the GC remains and has the same TGC and has the same effect on the relaxation times of the associated water. Measurements on cortical bone show the same collagen-related effects but do not have the long T1 and T2 components.  相似文献   

11.
A relatively rapid phase alternation of the effective field in the time averaged precession frequency (TAPF) sequence results in averaging of the proton RF spin-lock field. The spin-locking of the proton magnetization becomes less efficient and thus shortens T(1rho)(H), the proton spin-lattice relaxation time in the rotating frame. The relaxation time also depends on the ratio of tau(1) and tau(2) intervals i.e. tau(1)/tau(2) and not only on the number of tau(c)=tau(1)+tau(2) blocks, i.e. the number of the phase transients. Experiments are performed on solid samples of ferrocene and glycine and for some time intervals, T(1rho)(H) is shortened by factors of 9-100 compared to the relaxation times obtained in the standard experiment.  相似文献   

12.
In vivo multiple spin echoes (MSE) images of bone marrow in trabecular bone were obtained for the first time on a clinical 1.5 T scanner. Despite of a reduced sensitivity of the MSE trabecular bone images with respect to the cerebral matter ones, it is possible to observe some features in the MSE trabecular bone images that may be useful in the diagnosis of osteopenic states. Two different CRAZED-type MSE imaging sequences based on spin-echo and EPI imaging modalities were applied in phantom and in vivo. Preliminary experimental results indicate that EPI imaging readout seems to conceal the MSE contrast correlated with pore dimension in porous media. However it is still possible to detect anisotropy effects related to the bone structure in MSE-EPI images. Some strategies are suggested to optimize the quality of MSE trabecular bone images.  相似文献   

13.
PurposeBone marrow is found either as red bone marrow, which mainly contains haematopoietic cells, or yellow bone marrow, which mainly contains adipocytes. In adults, red bone marrow is principally located in the axial skeleton. A recent study has introduced a method to simultaneously estimate the fat fraction (FF), the T1 and T2* relaxation times of water (T1w, T2*w) and fat (T1f and T2*f) in the vertebral bone marrow. The aim of the current study was to measure FF, T1w, T1f, T2*w and T2*f in five sites of bone marrow, and to assess the presence of regional variations.MethodsMRI experiments were performed at 1.5 T on five healthy volunteers (31.6 ± 15.6 years) using a prototype chemical-shift-encoded 3D multi-gradient-echo sequence (VIBE) acquired with two flip angles. Acquisitions were performed in the shoulders, lumbar spine and pelvis, with acquisition times of < 25 seconds per sequence. Signal intensities of magnitude images of the individual echoes were used to fit the signal and compute FF, T1w, T1f, T2*w and T2*f in the humerus, sternum, vertebra, ilium and femur.ResultsRegional variations of fat fraction and relaxation times were observed in these sites, with higher fat fraction and longer T1w in the epiphyses of long bones. A high correlation between FF and T1w was measured in these bones (R = 0.84 in the humerus and R = 0.84 in the femur). In most sites, there was a significant difference between water and fat relaxation times, attesting the relevance of measuring these parameters separately.ConclusionThe method proposed in the current study allowed for measurements of FF, T1w, T1f, T2*w and T2*f in five sites of bone marrow. Regional variations of these parameters were observed and a strong negative correlation between the T1 of water and the fat fraction in bones with high fat fractions was found.  相似文献   

14.
In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed. The backscatter coefficient (BSC) and integrated backscatter coefficient (IBC) were numerically investigated for varying trabecular bone material properties, including density, Lame coefficients, viscosities, and resistance coefficients. The results show that the BSC is a complex function of trabecular bone density, and the IBC increases as density increases. The BSC and IBC increase with the first and second Lame coefficients. While not very sensitive to the second viscosity of the trabeculae, the BSC and IBC decrease as the first viscosity and resistance coefficients increase. The results demonstrate that, in addition to bone mineral density (BMD) and microarchitecture, trabecular material properties significantly influence ultrasonic backseattering signals in cancellous bones. This research furthers the understanding of ultrasonic backscattering in cancellous bones and the characterization of cancellous bone status.  相似文献   

15.
Proton nuclear magnetic resonance (NMR) spin-spin relaxation and imaging have been applied to investigate white Portland cement pastes during hydration in the absence and in the presence of organic solvents. The main organic solvent investigated was methanol, alone or together with the organic waste 2-chloroaniline (2-CA), an aromatic amine representative of an important class of highly toxic compounds. For all the analysed samples, prepared with a solvent-to-cement ratio of 0.4, the decay of the echo magnetization has been fitted by adopting a model that combines an exponential component with a gaussian one. The calculated independent relaxation parameters have been discussed in terms of morphological and dynamical changes that occur during the cement hardening process and pore formation. Three kinds of water molecules: "solid-like" (chemically and physically bound), "liquid-like" (porous trapped) and "free" water, endowed with anisotropic, near isotropic and isotropic motion, respectively, were identified. Spin-echo images collected on the same samples during the hydration kinetics, allowed the changes of water and solvents spatial distribution in the porous network to be monitored, showing percolation phenomena and confirming the multimodal open channels structure of the hardened cement system. Both T(2) relaxation and imaging data indicated that a pronounced delay occurs in the cement hardening when organics are present.  相似文献   

16.
Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders.  相似文献   

17.
骨小梁材料特性对超声背散射信号的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
基于时域有限差分法(FDTD)建立了松质骨的超声背散射仿真系统,研究了骨小梁材料特性对超声背散射信号的影响。首次得到松质骨中的超声背散射系数(BSC)和积分背散射系数(IBC)随骨小梁材料参数(密度、拉梅常数、黏度系数及声阻抗系数)的变化关系。研究结果表明,IBC随骨小梁密度的增加而增加;BSC和IBC随拉梅常数的增加而增加、随第一黏度系数的增加而近似线性地减小,第二黏度的变化对背散射信号的影响很小;背散射参数随阻抗系数的增加而减小。说明松质骨中的超声背散射特性不仅受骨矿密度(BMD)和骨微结构的影响,还与骨小梁的材料参数密切相关。研究结果有利于理解松质骨中超声的背散射特性,对松质骨骨质状况的评价有一定帮助。   相似文献   

18.
Qualitative and quantitative proton magnetic resonance imaging techniques were applied to persimmon (Diospyros kaki cv 'Fuyu') fruit during development and post-harvest ripening. Spin-lattice (T(1)) relaxation times in mesocarp parenchyma and vascular tissue exhibited a sigmoidal pattern of increase leading to commercial harvest, but declined abruptly during ripening, 2.5 weeks after picking. T(1) times in parenchyma tissue were 1000 and 2100 ms in fruitlets, and at commercial harvest, respectively. T(1) times in vascular tissue were consistently shorter than those in parenchyma tissue by 300 to 600 ms. In contrast, spin-spin (T(2)) relaxation varied over a narrow range during development, i.e., 82 to 106 ms, and 59 to 73 ms, for parenchyma and vascular tissue, respectively. During ripening, T(2) measurements increased smoothly, commencing one week after harvest. Dry matter, water content, skin color, water-soluble tannins, soluble solids, and mineral and carbohydrate composition was also determined in companion fruit. No obvious associations linking physico-chemical and MR parameters were established, implying that the changes in relaxation measurements observed in 'simple' fruit systems can not be rationalised without recourse to more complex investigations involving SEM and different NMR spectroscopic and imaging techniques.  相似文献   

19.
ObjectThe MRI tissue characterization of vertebral bone marrow includes the measurement of proton density fat fraction (PDFF), T1 and T2* relaxation times of the water and fat components (T1W, T1F, T2*W, T2*F), IVIM diffusion D, perfusion fraction f and pseudo-diffusion coefficient D*.However, the measurement of these vertebral bone marrow biomarkers (VBMBs) is affected with several confounding factors.In the current study, we investigated these confounding factors including the regional variation taking the example of variation between the anterior and posterior area in lumbar vertebrae, B1 inhomogeneity and the effect of fat suppression on f.Materials and methodsA fat suppressed diffusion-weighted sequence and two 3D gradient multi-echo sequences were used for the measurements of the seven VBMBs. A turbo flash B1 map sequence was used to estimate B1 inhomogeneities and thus, to correct flip angle for T1 quantification. We introduced a correction to perfusion fraction f measured with fat suppression, namely fPDFF.ResultsA significant difference in the values of PDFF, f and fPDFF, T1F, T2*W and D was observed between the anterior and posterior region. Although, little variations of flip angle were observed in this anterior-posterior direction in one vertebra but larger variations were observed in head-feet direction from L1 to L5 vertebrae.DiscussionThe regional difference in PDFF, fPDFF and T2*W can be ascribed to differences in the trabecular bone density and vascular network within vertebrae.The regional variation of VBMBs shows that care should be taken in reproducing the same region-of-interest location along a longitudinal study. The same attention should be taken while measuring f in fatty environment, and measuring T1. Furthermore, the MRI-protocol presented here allows for measurements of seven VBMBs in less than 6 min and is of interest for longitudinal studies of bone marrow diseases.  相似文献   

20.
Magnetic resonance imaging (MRI) studies of tissue engineered constructs prior to implantation clearly demonstrate the utility of the MRI technique for studying the bone formation process. To test the utility of our MRI protocols for explant studies, we present a novel test platform in which osteoblast-seeded scaffolds were implanted on the chorioallantoic membrane of a chick embryo. Scaffolds from the following experimental groups were examined by high-resolution MRI: (a) cell-seeded implanted scaffolds (CIM), (b) unseeded implanted scaffolds (UCIM), (c) cell-seeded scaffolds in static culture (CIV) and (d) unseeded scaffolds in static culture (UCIV). The reduction in water proton transverse relaxation times and the concomitant increase in water proton magnetization transfer ratios for CIM and CIV scaffolds, compared to UCIV scaffolds, were consistent with the formation of a bone-like tissue within the polymer scaffold, which was confirmed by immunohistochemistry and fluorescence microscopy. However, the presence of angiogenic vessels and fibrotic adhesions around UCIM scaffolds can confound MRI findings of bone deposition. Consequently, to improve the specificity of the MRI technique for detecting mineralized deposits within explanted tissue engineered bone constructs, we introduce a novel contrast agent that uses alendronate to target a Food and Drug Administration-approved MRI contrast agent (Gd-DOTA) to bone mineral. Our contrast agent termed GdALN was used to uniquely identify mineralized deposits in representative samples from our four experimental groups. After GdALN treatment, both CIM and CIV scaffolds, containing mineralized deposits, showed marked signal enhancement on longitudinal relaxation time-weighted (T1W) images compared to UCIV scaffolds. Relative to UCIV scaffolds, some enhancement was observed in T1W images of GdALN-treated UCIM scaffolds, subjacent to the dark adhesions at the scaffold surface, possibly from dystrophic mineral formed in the fibrotic adhesions. Notably, residual dark areas on T1W images of CIM and UCIM scaffolds were attributable to blood inside infiltrating vessels. In summary, we present the efficacy of GdALN for sensitizing the MRI technique to the deposition of mineralized deposits in explanted polymeric scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号