首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenomena of ageing and fatigue have been experimentally investigated in lead titanate and lead zirconate titanate thin ferroelectric films for samples on different substrates and with different materials of the measuring electrodes. A certain broadening of the dielectric permittivity peak is observed for the films on the silicon substrate after a year keeping without external actions. The lead titanate films on corundum substrates did not demonstrate visible changes in structural and dielectric parameters in the course of this time. In the course of repeated cycling the reduction of switching polarization in the lead titanate and lead zirconate titanate films on silicon substrates takes place at considerably greater number of cycles as compared to the same films on corundum substrates under the identical conditions. The above changes of dielectric and switching characteristics can be relevant to the changes in the domain structure of the materials under investigation in the process of their ageing and repeated switching. The reason for the acceleration of the ageing processes in the films on corundum substrates could be either an increase in the absolute magnitude of the switching field or an increase of the internal bias field, that facilitate the migration of oxygen vacancies in the films with the perovskite structure to the electrode–ferroelectric surface with the consequent fixation of domain walls.  相似文献   

2.
We demonstrated the formation of single-crystal-like materials that contain preferentially oriented arrays of lead zirconate titanate (PZT) cube-shaped particles by self-assembly. Hydrothermally synthesized PZT particles with a bulk composition of Zr/Ti = 70/30 were used in making microcrystal arrays. Spreading a suspension containing PZT cube-shaped particles, 2-propanol, and mineral oil at the air-water interface produced a one-dimensional planar array of PZT particles on the water surface. The array so formed was subsequently transferred onto a flat or curved substrate. X-ray diffraction and electron backscattered diffraction analyses revealed that most of the cube-shaped particles in the array were oriented with their pseudocubic (001) direction aligned parallel to the normal direction of the substrate surface. Filling the arrays with matrixes produced monolayer or multilayer textured composites. The piezoelectric properties of oriented cube-shaped micron-sized particles in the self-assembled arrays were measured using a modified atomic force microscope to reveal the ferroelectric nature of the PZT arrays.  相似文献   

3.
Atomic scale structure has a central importance for the understanding of functional properties of ferroelectrics. The X-ray and neutron diffraction studies used for the average symmetry determination of lead zirconate titanate [Pb(ZrxTi(1- x))O3, PZT] ceramics and powders are reviewed. The results obtained through two frequently used local probes, transmission electron microscopy (TEM) combined with electron diffraction (ED) and Raman scattering measurements, are summarized. On the basis of these studies, structural trends as a function of composition x and temperature are outlined. There are two distinguished intrinsic structural features, (i) lead-ion shifts and (ii) local structural distortions related to different B cations and the spatial composition variation of x, which have a pronounced effect on the functional properties of PZT. Particular attention is paid to the morphotropic phase boundary (MPB) compositions for which a large number of different structural models have been proposed. Earlier symmetry considerations show that the monoclinic phase cannot serve as a continuous bridge between tetragonal and rhombohedral phases. This suggests that the two-phase coexistence has an important role for the piezoelectric properties. Near the MPB, the extrinsic contribution to piezoelectricity includes pressure (or electric-field)-induced changes in phase fractions and domain wall motion. It was recently shown that the domain contribution is crucial for the electromechanical properties of PZT in the vicinity of the MPB. The dependence of domain widths on crystal size and shape should also be properly accounted for when TEM/ED measurements complement X-ray and/or neutron diffraction experiments. The structure-piezoelectric property relations are summarized.  相似文献   

4.
5.
A new preparation route towards rare-earth (RE) doped polycrystalline lead lanthanum zirconate titanate (PLZT) ceramics (RE = Y3+, Nd3+, Yb3+), based on the use of doped lanthanum oxide or zirconia, is reported. Structural characterization by X-ray powder diffraction reveals that secondary phase formation can be substantially diminished in comparison to conventional preparation methods. The distribution of the rare-earth dopants was investigated as a function of concentration by static 207Pb spin echo NMR spectra, using Fourier Transformation of Carr–Purcell–Meiboom–Gill spin echo trains. For the Nd- and Yb-doped materials, the interaction of the 207Pb nuclei with the unpaired electron spin density results in significant broadening and shifting of the NMR signal, whereas these effects are absent in the diamagnetic Y3+ doped materials. Based on different concentration dependences of the NMR lineshape parameters, we conclude that the structural role of the Nd3+ dopants differs significantly from that of Yb3+. While the Nd3+ ions appear to be statistically distributed in the PLZT lattice, incorporation of Yb3+ into PLZT appears to be limited by the appearance of doped cubic zirconia as a secondary phase.  相似文献   

6.
The adsorption of lignosulfonate onto a commercial, modified lead zirconate titanate (PZT-PNN) powder in aqueous suspension and its effect on particle zeta potential and suspension rheology were investigated as functions of pH and lignosulfonate dosage. Langmuir analysis of the adsorption data demonstrated that a significant component of the overall driving force of adsorption at all pH values examined was specific (nonelectrostatic) bonding. Electrostatic bonding provided a significant contribution to adsorption at pH 6.0, but diminished at lower pH owing to decreased lignosulfonate ionization and at higher pH due to decreased positive surface site concentration on the PZT-PNN. The affinity of adsorption was highest at pH 6.0 because the electrostatic component was maximal at this pH. The zeta potential magnitude increased and the apparent viscosity decreased with increasing pH and increasing lignosulfonate dosage, up to approximately monolayer coverage. The lignosulfonate dosage required for monolayer coverage decreased with increasing pH owing to increasing lignosulfonate expansion and the decrease in concentration of positive surface sites on the PZT-PNN. Suspension stabilization was considered to occur by an electrosteric mechanism.  相似文献   

7.
Synergistic processes in hybrid composites have frequently been described in the literature over the past few years, opening doors to new studies and applications for this type of material. In this study, three-phase composites were obtained using polyurethane (PU) as the matrix, lead zirconate titanate (PZT) as the ferroelectric ceramic and carbon black (CB) as the conductive phase. The discussion is primarily focused on a comparison of the electrical, thermal and dielectric properties of three-phase composites with those of PU_CB and PU_PZT biphasic composites. The study describes a synergistic effect between the PU/PZT/CB phases involved in the generation of charges between the particles, implying better homogeneity of the composites as well as influence over the PU crystallization. The PU_CB conductivity profile showed a phenomenon of multi-step percolation thresholds attributed to the molecular structure and repulsive surface charge of CB particles. The surface charge phenomenon restricted the percolation curve analysis of the three-phase composites by means of classic percolation theory, shown by distortion of the critical exponents. The dielectric constant three-phase composites increased gradually as a function of CB in accordance with the percolation profile.  相似文献   

8.
Coprecipitation of metal hydroxides inside water-in-oil (W/O)-emulsion droplets leads to spherical gel-particles. Stoichiometric Nd-doped lead zirconate titanate (PZT) ceramic powders are prepared from the water-soluble inorganic precursors Pb(NO3)2, ZrO(NO3)2, TiO(NO3)2, and the dopant Nd(NO3)3. The injection of gaseous NH3 into the emulsion provides the coprecipitation of the corresponding hydroxides. The spray-dried powder consists of surfactant-covered spheres containing portions on HN4NO3. Thermal decomposition of NH4NO3 during calcination may destruct the gel spheres. Therefore, NH4NO3 was removed by sublimation during plasma burning and simultaneously the oxidation of the organic compounds was accelerated. Surprisingly, plasma burning (< 180°C) results in a PZT-phase with small amounts of unreacted PbO. SEM-micrographs show discrete narrow-distributed spheres without destructions caused by NH4NO3 decomposition or by organic burnout.  相似文献   

9.
Lead zirconate titanate (PZT) ceramic powder has been synthesized from metal nitrate solutions using the EDTA-gel method with different nitric acid/EDTA ratios. It was found that the thermal decomposition of the precursor was strongly affected by the nitric acid/EDTA ratio, the amount of sample, the atmosphere, and the heating rate. Crystallization of the perovskite PZT phase initiated at external temperatures as low as 250°C, as a result of the exothermic decomposition reaction of the nitrate-EDTA complexes. Possible reaction schemes are suggested and discussed to describe the thermal decomposition of PZT-EDTA precursors under different experimental conditions.  相似文献   

10.
The characteristics of radiation detector fabricated by stacking some piezoelectric lead zirconate titanate (PZT) elements were studied by irradiating it with a 400 MeV/n xenon (Xe) beam. Comparing between observed results from the detector and calculation results using Bethe–Bloch formula, it was found that the amplitude of the output voltage observed was dependent on the amount of ionization energy loss of Xe ion with PZT.  相似文献   

11.
The structural evolution of sol-gel derived lead zirconate titanate (PZT) precursor films during and after physical drying was investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), selected area electron diffraction (SAED), and time-resolved X-ray diffraction (XRD). Films were deposited from initial 0.3 mol/dm(3) precursor sols with varying hydrolysis ratios. Zr-rich grains of 1-10 nm size, embedded in a Pb-, Zr-, and Ti-containing amorphous matrix were found in as-dried films. The Zr-rich regions were crystalline at hydrolysis ratios [H(2)O]/[PZT] < 27.6, and amorphous at ratios > 100. X-ray diffraction analysis of PZT and zirconia sols revealed that the crystalline nanoparticles in both sols are identical and are probably composed of nanosized zirconium oxoacetate-like clusters. This study demonstrates that time-resolved X-ray diffraction combined with electron energy loss spectroscopy mapping is a powerful tool to monitor the nanoscale structural evolution of sol-gel derived thin films.  相似文献   

12.
The evolution of nanostructure in sol-gel derived lead zirconate titanate (PZT) and zirconia precursor sols at different hydrolysis ratios was investigated by small angle X-ray scattering (SAXS). The shape of the clusters in the zirconia sol could be described by the length-polydisperse cylindrical form factor. The zirconia-based clusters were characterized by a cross-sectional radius, r(0), of 0.28 nm and a practically monodisperse length of ca. 1.85 nm. These clusters were probably constructed of zirconia-related tetrameric building blocks. Similar cylindrical structural motifs were observed in PZT precursor sols with [H(2)O]/[Zr+Ti]=9.26 and 27.6, but the polydispersity in length was much higher. Clear scattering contributions from Ti and Pb centers were not detected, which was interpreted in terms of a homogeneous distribution of unbound lead ions in solution and the relatively low scattering intensity from any Ti-based clusters or oligomers that may have been present in the sols.  相似文献   

13.
The method of DTA and design of two thermoanalytical cells are suggested for high-rate heating of samples at speeds up to 103 °C s?1 and more. Method allows to determine the limiting temperature of attainable superheat during thermolysis processes of melting substances. Some testing results are given.  相似文献   

14.
Oxide one‐pot synthesis was used to synthesize a polymer precursor to lead titanate, PbTiO3. Perovskite lead titanate, PbTiO3, was synthesized via the sol–gel process. The dielectric constant, electrical conductivity and loss tangent of our acrylic rubber (AR71)–lead titanate (PT) composite material (AR/PT_8) were 14.15, 2.62 × 10?7/Ω m, and 0.093, respectively, measured at 27 °C and 1000 Hz. SEM micrographs of composites between the AR71 elastomer and PbTiO3 showed that the particles were reinforced within the matrix. The electrorheological properties of the AR71/PT composites were investigated as functions of electric field strength from 0 to 2 kV/mm and PbTiO3 particle volume fraction. The storage modulus increased linearly with particle volume fraction, with or without an electric field. Without an electric field, the particles merely acted as a filler to absorb or store additional stress. With the electric field on, particle‐induced dipole moments were generated, leading to interparticle interactions, and thus a substantial increase in storage modulus. With PbTiO3 particle volume fractions as small as 10?4 embedded in the elastomer matrix, the modulus increased by nearly a factor of 2 as the electric field strength varied from 0 to 2 kV/mm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We present a study of the nanotribological behavior of ZnTiO3 films; the surface morphology, stoichiometry, and friction (μ) were analyzed using atomic force microscopy, X‐ray photoelectron spectroscopy, and nanoscratch system. It is confirmed that the measured values of H and μ of the ZnTiO3 films were in the range from 8.5 ± 0.4 to 5.6 ± 0.4 GPa and from 0.164 to 0.226, respectively. It is suggested that the hexagonal ZnTiO3 decomposes into cubic Zn2TiO4 and rutile TiO2 based on the thermal treatment; the H, μ, and RMS were changed owing to the grain growth and recovery that results in a relax crystallinity of ZnTiO3 films. From X‐ray photoelectron spectroscopy measured, core levels of O 1 can attribute the weaker bonds as well as lower resistance after thermal treatment. The XRD patterns showed that as‐deposited films are mainly amorphous; however, the hexagonal ZnTiO3 phase was observed with the ZnTiO3 (104), (110), (116), and (214) peaks from 620 to 820 °C, indicating that there is highly (104)‐oriented ZnTiO3 on the silicon substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Piezoelectric materials that generate electricity when deforming are ideal for many implantable medical sensing devices. In modern piezoelectric materials, inorganic ceramics and polymers are two important branches, represented by lead zirconate titanate (PZT) and polyvinylidene difluoride (PVDF). However, PVDF is a nondegradable plastic with poor crystallinity and a large coercive field, and PZT suffers from high sintering temperature and toxic heavy element. Here, we successfully design a metal-free small-molecule ferroelectric, 3,3-difluorocyclobutanammonium hydrochloride ((3,3-DFCBA)Cl), which has high piezoelectric voltage coefficients g33 (437.2 × 10−3 V m N−1) and g31 (586.2 × 10−3 V m N−1), a large electrostriction coefficient Q33 (about 4.29 m4 C−2) and low acoustic impedance z0 (2.25 × 106 kg s−1 m−2), significantly outperforming PZT (g33 = 34 × 10−3 V m N−1 and z0 = 2.54 × 107 kg s−1 m−2) and PVDF (g33 = 286.7 × 10−3 V m N−1, g31 = 185.9 × 10−3 V m N−1, Q33 = 1.3 m4 C−2, and z0 = 3.69 × 106 kg s−1 m−2). Such a low acoustic impedance matches that of the body (1.38–1.99 × 106 kg s−1 m−2) reasonably well, making it attractive as next-generation biocompatible piezoelectric devices for health monitoring and “disposable” invasive medical ultrasound imaging.

A small-molecule organic ferroelectric (3,3-DFCBA)Cl has high piezoelectric voltage coefficients g33 (437.2 × 10−3 V m N−1), a large electrostriction coefficient Q33, and low acoustic impedance z0, far beyond that of PZT and PVDF.  相似文献   

17.
The paper describes the results of statistical analysis of DTA diagrams. A connection is found between the second and third endothermal effects. An analysis of geometrical characteristics of theT, S andh values of DTA diagrams confirms the absence of reliable connections. The rank correlation coefficients are determined according to Spearman. Non-linear programming is formulated to obtain the kinetic dependencies of the process of hydration of cement studied by DTA.
Zusammenfassung Es wurden die Ergebnisse von statistischen Analysen der DTA Kurven besprochen, und ein Zusammenhang zwischen dem zweiten und dritten endothermischen Effekt gefunden. Durch Untersuchung der geometrischen Kennzeichen derT, S undh Werte der DTA Diagramme konnten keine verlÄ\lichen ZusammenhÄnge festgestellt werden. Die Koeffizienten der Rangkorrelation wurden nach Spearman bestimmt. Zur KlÄrung der kinetischen ZusammenhÄnge der Zementhydratation durch DTA wurde eine nichtlineare Programmaufgabe formuliert.

Résumé On décrit les résultats de l'analyse statistique des courbes d'ATD. On a trouvé une connexion entre le second et troisième effet endothermiques. L'analyse des caractéristiques géométriques des effets des valeursT, S eth qui apparaissent sur les courbes d'ATD confirme l'absence de connexions sûres. On a déterminé les coefficients de la corrélation de rang suivant Spearman. On propose un programme non linéaire pour obtenir les dépendances cinétiques du processus d'hydratation du ciment étudié par ATD.

. . T, S h . . , .
  相似文献   

18.
Crystalline PbTiO3 was obtained through the thermal decomposition of 8-hydroxyquinolinate of lead(II) and that of titanium(IV), which was monitored by TG/DTG/DTA under different atmospheric conditions and with varying heating rates. The compound was prepared from adding 8-hydroxyquinoline solution in the solution of metallic ions Pb(II):Ti(IV) (1:1) under constant stirring at 3°C, having the pH adjusted to 10. The results of these investigations show that different thermal behavior related to the precursor occurred and also the consequent formation of residues which have different crystallinities. No carbonate residues from the thermal decomposition could be determined by XRD and IR. Only PbTiO3 was observed and confirmed by DSC at 470°C, temperature lower than the tetragonal-cubic transition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
20.
A perovskite lead zirconate titanate was synthesized by the sol‐gel process, using lead glycolate, sodium tris(glycozirconate) and titanium glycolate as the starting precursors. For the mole ratio Pb:Zr:Ti of 1:0.5:0.5 [Pb(Zr0.5Ti0.5)O3], TGA‐DSC thermal analysis indicated that the percentage of ceramic yield was 55.8, close to the calculated chemical composition value of 49.5. The exothermic peak occurred at 268 °C below the theoretical Curie temperature of 400 °C. The pyrolysis of Pb(Zr0.5Ti0.5)O3 of the perovskite phase was investigated in terms of calcination temperature and time. The structure obtained was of the tetragonal form when calcined at temperatures below 400 °C; it transformed to the tetragonal and the cubic forms of the perovskite phase on calcination above the Curie temperature, as verified by X‐ray data. The lead zirconate titanate synthesized and calcined at 400 °C for 1 h had the highest dielectric constant, the highest electrical conductivity and the dielectric loss tangent of 10 190, 0.803 × 10?3 (Ω.m)?1 and 1.513 at 1000 Hz, respectively. The lead zirconate titanate powder synthesized has potential applications as an electronic material. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号