首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface activity of the poly–[block (ethylene oxide)]–poly [block (propylene oxide)]–poly [block (ethylene oxide)] copolymers (EO)x–(PO)y–(EO)x adsorbed together with dihexadecyl phosphoric acid (DHP), a synthetic phospholipid, is analyzed from their surface pressure and surface potential isotherms. The block copolymers of (EO)x–(PO)y–(EO)x with variable molecular weight (1100–14 000) were dissolved in the subphase for DHP monolayers. The concentration of the copolymers within the aqueous subphase were selected to render an initial surface tension of 60 mN/m. The simultaneous adsorption of the copolymer and DHP is attested by the observation of a liquid expanded state at large areas, absent for pure DHP monolayers. Above some critical surface pressure all copolymers cited above are expelled from the interface. The surface potential isotherms, which give information on the component of the molecular dipole moment normal to the plane of the monolayer, are interpreted in terms of changes in the copolymer conformation as well as in terms of the copolymer desorption from the air–liquid interface. For an equal hydrophobic/hydrophilic ratio, the size of the chains or molecular weight is decisive in the mechanism of the copolymer expulsion from the air–liquid interface.  相似文献   

2.
The effects of the addition of random copolymers of poly(styrene-co-methacrylic acid) [P(S-co-MAA)] on the self-assembly of block copolymers of poly(styrene-b-acrylic acid) (PS-b-PAA) are described. The effects of variation of five factors, including the MAA content, the weight fraction and molar mass of the P(S-co-MAA), the initial concentration of the mixture, and the length of the PAA segment in the block copolymer, were investigated. With increasing MAA content, the localization of the random copolymer in the aggregate changed from the core to the interface, which led to a morphological transition from spheres to vesicles. Vesicles, mixtures of vesicles and large spheres, and large spheres alone were formed with increasing weight fraction of the random copolymer. When the molar mass of the random copolymer was high, both rods and vesicles were observed at low water contents; otherwise, only vesicles were observed. The vesicle size increased (from 100 to 140 nm) with increasing initial polymer concentration, whereas the vesicle membrane thickness remained constant. The size of the vesicles prepared from the mixtures increased with water content but decreased with the length of PAA in the diblock.  相似文献   

3.
Polymeric vesicle formation is dictated by the mutual diffusion of water into the bulk block copolymer and vice versa. The hydration of three poly(ethylene oxide)-co-poly(butylene oxide) copolymers with different molecular weights has been monitored both macroscopically (confocal laser scanning microscopy) and microscopically (small-angle X-ray scattering). Both methods have revealed that the amphiphilic block copolymers swell in water following two qualitatively different growth regimes. Initially, water and copolymer diffuse into each other following a subdiffusional growth as the result of a molecular-level arrangement of the amphiphilic membranes that comprise the swollen copolymer. After a critical time, which is exponential in polymer molecular weight, the amphiphilic membranes reach their equilibrium morphology and as a consequence the growth starts to follow Fickian diffusion. The complex hydration kinetics dictate the phases formed at the interface between the amphiphilic copolymer and water. Upon hydration of simple amphiphiles, the amphiphilic film swells and the concentration gradient at the interface with water gradually drops to zero. This strongly affects the complex driving forces that control vesicle formation. Indeed, to form vesicles, an energy barrier has to be overcome, and therefore a constant concentration gradient is required. We show, by enhancing the hydration kinetics via an ac field, how the interface concentration gradient is kept constant and the magnitude of this gradient dictates the final size of the vesicles.  相似文献   

4.
The properties of amphiphilic block copolymer membranes can be tailored within a wide range of physical parameters. This makes them promising candidates for the development of new (bio)sensors based on solid-supported biomimetic membranes. Here we investigated the interfacial adsorption of polyelectrolyte vesicles on three different model substrates to find the optimum conditions for formation of planar membranes. The polymer vesicles were made from amphiphilic ABA triblock copolymers with short, positively charged poly(2,2-dimethylaminoethyl methacrylate) (PDMAEMA) end blocks and a hydrophobic poly( n-butyl methacrylate) (PBMA) middle block. We observed reorganization of the amphiphilic copolymer chains from vesicular structures into a 1.5+/-0.04 nm thick layer on the hydrophobic HOPG surface. However, this film starts disrupting and dewetting upon drying. In contrast, adsorption of the vesicles on the negatively charged SiO2 and mica substrates induced vesicle fusion and formation of planar, supported block copolymer films. This process seems to be controlled by the surface charge density of the substrate and concentration of the block copolymers in solution. The thickness of the copolymer membrane on mica was comparable to the thickness of phospholipid bilayers.  相似文献   

5.
Polymeric vesicles have attracted considerable attention in recent years, since they are a model for biological membranes and have versatile structures with several practical applications. In this study, we prepare vesicles from polystyrene-b-poly(acrylic acid) block copolymer in dioxane/water and dioxane/THF/water mixtures. We then examine the ability of additives (such as NaCl, HCl, or NaOH), solvent composition, and hydrophilic block length to control vesicle size. Using turbidity measurements and transmission electron microscopy (TEM) we show that larger vesicles can be prepared from a given copolymer by adding NaCl or HCl, while adding NaOH yields smaller vesicles. The solvent composition (ratio of dioxane to THF, as well as the water content) can also determine the vesicle size. From a given copolymer, smaller vesicles can be prepared by increasing the THF content in the THF/dioxane solvent mixture. In a given solvent mixture, vesicle size increases with water content, but such an increase is most pronounced when dioxane is used as the solvent. In THF-rich solutions, on the other hand, vesicle size changes only slightly with the water concentration. As to the effect of the acrylic acid block length, the results show that block copolymers with shorter hydrophilic blocks assemble into larger vesicles. The effect of additives and solvent composition on vesicle size is related to their influence on chain repulsion and aggregation number, whereas the effect of acrylic acid block length occurs because of the relationship among the block length, the width of the molecular weight distribution, and the stabilization of the vesicle curvature.  相似文献   

6.
Surface behavior of the pH- and thermoresponsive amphiphilic ABCBA pentablock copolymer has been studied with respect to the environmental conditions. We demonstrate that the pentablock copolymer poly((diethylaminoethyl methacrylate)-b-(ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)-b-(diethylaminoethyl methacrylate)) possesses reversible temperature changes at the air-water interface in a narrow pH range of the water subphase. Significant diversity in the surface morphology of pentablock copolymer monolayers at different pH and temperatures observed were related to the corresponding reorganization of central and terminal blocks. Remarkable reversible variations of the surface pressure observed for the Langmuir monolayers at pH 7.4 in the course of heating and cooling between 27 and 50 degrees C is associated with conformational transformations of terminal blocks crossing the phase line in the vicinity of the lower critical solution temperature point. The observed thermoresponsive surface behavior can be exploited for modeling of the corresponding behavior of pentablock copolymers adsorbed onto various biointerfaces for intracellular delivery for deeper understanding of stimuli-responsive transformations relevant to controlled drug and biomolecules release and retention.  相似文献   

7.
The behavior of three copolymers of N-isopropylacrylamide (NIPAM), methacrylic acid (MAA), and hydrophobic moiety was studied at phospholipid monolayer/subphase interfaces. The hydrophobic moieties, N-terminal dioctadecylamine (DODA) and random octadecylacrylate (ODA), were used as anchoring groups. The interactions between a 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC) monolayer and the copolymers were studied using the Langmuir balance technique. The effect of subphase pH, distribution of anchors along the copolymer chain, and copolymer molecular weight on the nature of the interactions between the copolymer chains and the DSPC monolayer were investigated. A first-order kinetics model was used to analyze the copolymers adsorption at the DSPC monolayer/subphase interface and allowed the interaction area between the copolymer chains and the DSPC monolayer, A(x), to be determined. The interaction area appears to depend on the subphase pH and the copolymer molecular weight. On decreasing pH, the interaction area of high molecular weight copolymers increases significantly; this is consistent with the copolymer chain phase transition from an extended coil to a collapsed globule while pH is lowered. In the latter conformation, strong hydrophobic attractive interactions between the copolymer chains and the hydrophobic part of the DSPC monolayer favor the copolymer intercalation, which could eventually provoke the phospholipidic layer destabilization or rupture.  相似文献   

8.
It is an important challenge to balance the degradability and stability of polymer vesicles. We report a thermo-responsive vesicle based on poly[(N-isopropyl acrylamide-stat-7-(2-methacryloyloxyethoxy)-4-methylcoumarin)-b-(L-glutamic acid)] [P (NIPAM45-stat-CMA5)-b-PGA42] diblock copolymer, which was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization and ring-opening polymerization (ROP). The membrane of the vesicle consists of thermo-responsive PNIPAM and photo-cross-linkable PCMA. The PGA chains in the vesicle coronas can colloidally stabilize the vesicles in water and can be postfunctionalized for further applications. Transmission electron microscopy and dynamic light scattering studies confirmed the formation of vesicles. Overall, we prepared a new functional thermo-responsive vesicle based on polypeptide copolymers that may be used as nanocarriers for the facile loading of a range of molecules in future.  相似文献   

9.
《中国化学快报》2020,31(6):1660-1664
Poly(N,N-dimethyl acrylamide)-block-poly(styrene)-block-poly(N,N-dimethyl acrylamide)(PDMAc-bPSt-b-PDMAc) amphiphilic triblock copolymer micro/nano-objects were synthesized through reversible addition-fragmentation chain transfer(RAFT) dispersion polymerization of St mediated with poly(N,Ndimethyl acrylamide) trithiocarbonate(PDMAc-TTC-PDMAc) bi-functional macromolecular RAFT agent.It is found that the morphology of the PDMAc-b-PSt-b-PDMAc copolymer micro/nano-objects like spheres,vesicles and vesicle with hexagonally packed hollow hoops(HHHs) wall can be tuned by changing the solvent composition.In addition,vesicles with two sizes(600 nm,264 nm) and vesicles with HHHs features were also synthesized in high solid content systems(30 wt% and 40 wt%,respectively).Besides,as compared with typical AB diblock copolymers(A is the solvophilic,stabilizer block,and B is the solvophobic block),ABA triblock copolymers tend to form higher order morphologies,such as vesicles,under similar conditions.The finding of this study provides a new and robust approach to prepare block copolymer vesicles and other higher order micelles with special structure via PISA.  相似文献   

10.
Short-term hydrolytic and enzymatic degradation of poly(ε-caprolactone) (PCL), one series of triblock (PCL/PEO/PCL) and the other of diblock (PCL/PEO) copolymers, with a low content of hydrophilic PEO segments is presented. The effect of the introduction of PEO as the central or lateral segment in the PCL chain on copolymer hydrolysis and biodegradation properties was investigated. FTIR results revealed higher hydrolytic degradation susceptibility of diblock copolymers due to a higher hydrophilicity compared to PCL and triblock copolymers. Enzymatic degradation was tested using cell-free extracts of Pseudomonas aeruginosa PAO1, for two weeks by following the weight loss, changes in surface roughness, and changes in carbonyl and crystallinity index. The results confirmed that all samples underwent enzymatic degradation through surface erosion which was accompanied with a decrease in molecular weights. Diblock copolymers showed significantly higher weight loss and decrease in molecular weight in comparison to PCL itself and triblock copolymers. AFM analysis confirmed significant surface erosion and increase in RMS values. In addition, biodegradation of polymer films was tested in compost model system at 37 °C, where an effective degradation of block copolymers was observed.  相似文献   

11.
Melting points and lamellar thicknesses have been measured for ethylene oxide–propylene oxide block copolymers (sym-PEP) with central poly(ethylene oxide) block lengths of 70–100 chain units and end poly(propylene oxide) block lengths of 0–30 chain units. Melting points of the block copolymers are lower than those of the corresponding poly(ethylene oxide) homopolymer by an amount (up to 15°C) which increases as the poly(propylene oxide) block length increases. Most samples have more than one melting transition, which can be assigned to variously folded chain crystals. End interfacial free energies σe for the various crystals have been estimated by use of Flory's theory of melting of block copolymers. For a given crystal type (e.g., once-folded-chain) σe is higher the longer the chain length of the end poly(propylene oxide) blocks. For a given copolymer σe is lower, the more highly folded the poly(ethylene oxide) chain.  相似文献   

12.
The adsorption of a series of amphiphilic diblock copolymers of poly(ethylene oxide) (PEO) and poly(DL-lactide) (PL) at hydrophobized silica from aqueous solution was studied using time-resolved ellipsometry and reflectometry. The adsorbed amounts only display a weak dependence on the copolymer composition in both water and phosphate-buffered solution. For the short copolymers, the layer thickness decreases slightly with increasing length of the hydrophobic block. Furthermore, in comparison with the short copolymers, the layer thickness of the long copolymers is substantially higher. Upon degradation of the PL block, the adsorbed amount is found to decrease and approach that of the corresponding PEO homopolymer. Protein rejection studies indicate that the adsorption of fibrinogen is inhibited by copolymer preadsorption. The protein rejection is enhanced with increasing surface coverage of the preadsorbed copolymer, but largely independent of the length of the PL block and the PEO block. For all polymers investigated, essentially complete protein rejection is obtained above a critical surface coverage that is significantly lower than the saturation coverage of the copolymers. Removing the copolymer from bulk solution after preadsorption causes a partial desorption, resulting in reduced protein rejection. However, the protein rejection capacity with and without copolymer in the bulk solution is found to be similar at a given surface coverage. Contrary to the behavior of the intact copolymers, fibrinogen adsorption is found to be significant at surfaces pretreated with an extensively degraded copolymer and, in fact, quantitatively comparable to that at the hydrophobic surface in the absence of preadsorption. This finding, together with that of the effect of the copolymer composition on protein rejection, suggests that an efficient protein rejection is maintained until only a few L units remain in the copolymer, i.e., until nearly completed degradation. Copyright 2000 Academic Press.  相似文献   

13.
Graft copolymers of styrene and poly(propylene oxide) were prepared by reaction between styrene and a poly(propylene oxide) methacrylate macromonomer. The graft copolymers were characterized by i.r., GPC and 1H-NMR and mechanical properties were examined. The effect of zinc chloride on the copolymerization was evaluated. The results showed a decrease in the incorporation of macromonomer in the graft copolymer when zinc chloride was added to the system. This effect has been attributed to interaction among chains of poly(propylene oxide) and the zinc chloride.  相似文献   

14.
采用Monte Carlo模拟方法研究了具有相同链长和组分比的不同嵌段序列的AB两嵌段共聚物与ABA三嵌段共聚物在选择性溶剂中形成囊泡的动力学过程. 模拟结果表明, AB两嵌段共聚物囊泡的形成与ABA三嵌段共聚物囊泡的形成的动力学过程不同. 在慢速退火条件下, ABA三嵌段共聚物囊泡是通过亲水链段向胶束的表面和中心扩散而形成的, 而AB两嵌段共聚物囊泡则由片层弯曲闭合而形成. 相对而言, 退火速度对AB两嵌段共聚物囊泡形成的动力学过程没有显著影响, 其改变仅影响亲水链段与疏水链段发生相分离的难易程度. 当退火速度较快时, 亲水链段和疏水链段发生相分离的速度较快且相分离发生在囊泡形成之前; 而当退火速度较慢时亲水链段和疏水链段之间的相分离在囊泡形成之后仍在进行.  相似文献   

15.
Direct formation of giant vesicles from synthetic polypeptides   总被引:2,自引:0,他引:2  
This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography (SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 microm, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 microm. It is expected to be used in drug and gene delivery.  相似文献   

16.
The pH and temperature responsive properties of poly(butadiene)107-poly(L-lysine)27 (PB107-P(Lys)27) block copolymer vesicles in aqueous solution were studied using dynamic and static light scattering, circular dichroism spectroscopy and transmission electron microscopy. In this material, the responsiveness comes partially from secondary structure changes within the polypeptide chain. These studies seek to elucidate the effect of these different polypeptide secondary structure changes on the morphology of self-assembled vesicles. It was found that as pH decreases, protonation of P(Lys) side-chain amine groups causes swelling in the vesicles due to the helix-coil transition and associated charge-charge interactions within the corona chains. At high pH and high temperature, P(Lys) corona chains undergo a secondary structure change from alpha-helix to beta-sheet which causes an increase in vesicle size due to the relief of interfacial curvature. This study represents one of the first instances whereby different secondary structure transitions within the same polypeptide have been incorporated into a block copolymer assembly that can be used to produce dual-responsive materials.  相似文献   

17.
In this paper,crystallization kinetics of a series of ethylene-propylene copolymers prepared by living polymerization coordination catalyzed by a fluorinated bis(phenoxyimine)Ti catalyst(FI-EP copolymers)was studied,and was compared with that of ethylene-propylene copolymers prepared by a conventional Ziegler-Natta catalyst(ZN-EP copolymers).It is found that,the Avrami exponent and the crystallization rate constant of the FI-EP and ZN-EP copolymer show similar dependence on crystallization temperature,bu...  相似文献   

18.
Dynamic moduli of fumed silica suspensions in aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers and PEO homopolymers were measured as a function of surface coverage. Since the block copolymers and PEO are adsorbed on the silica surface through hydrogen bonding between the ether oxygen and the silanol group on the silica surface, the interaction between the silanol groups, which is dominant for the aggregation of silica particles, should be prohibited. Dynamic moduli in the silica suspensions were strongly related to the stability of the silica suspensions and the block copolymer, and the longest PEO portion was useful for stabilizing the silica particles. However, the PEO homopolymer did not support stability of the silica particles, suggesting that chain conformation of the PEO portion in the block copolymer is different from that for the PEO homopolymer. Copyright 2001 Academic Press.  相似文献   

19.
以环氧丙烷聚醚三元醇(PPO)为起始剂, 开环聚合D 型丙交酯(DLA), 合成三臂环氧丙烷聚醚三元醇-聚右旋乳酸(PPO-PDLA)嵌段预聚体. 采用端基活化技术对预聚体进行端羟基活化, 再与L 型丙交酯(LLA)进行逐步开环聚合,合成了不同分子量的三臂环氧丙烷聚醚三元醇-聚右旋乳酸-聚左旋乳酸(PPO-PDLA-PLLA)嵌段共聚物. 采用红外(FTIR)、核磁(NMR)和凝胶渗透色谱(GPC)等对三臂PPO-PDLA-PLLA 嵌段共聚物的测试表明, 合成的嵌段共聚物分子链具有很高的立构规整度; 通过调节LLA 单体与PPO-PDLA 预聚体的投料比, 不仅可控制产物的分子序列结构, 而且样品的数均分子量可大于100 kDa. 差示扫描量热仪(DSC)和广角X 射线衍射(WAXD)结果显示, 三臂PPO-PDLAPLLA嵌段共聚物的异构体链段分子间生成立构复合晶体, 其熔点约为200 ℃, 且没有PLLA 均聚物链段结晶现象. 实验结果表明, 这是一类具有实际应用价值的新型耐热聚乳酸(PLA)材料.  相似文献   

20.
We reported previously (Macromolecules 2003, 36, 5321; Langmuir, 2004, 20, 7412) that amphiphilic diblock copolymers having polyelectrolytes as a hydrophilic segment show almost no surface activity but form micelles in water. In this study, to further investigate this curious and novel phenomenon in surface and interface science, we synthesized another water-soluble ionic amphiphilic diblock copolymer poly(hydrogenated isoprene)-b-sodium poly(styrenesulfonate) PIp-h2-b-PSSNa by living anionic polymerization. Several diblock copolymers with different hydrophobic chain lengths were synthesized and the adsorption behavior at the air/water interface was investigated using surface tension measurement and X-ray reflectivity. A dye-solubilization experiment was carried out to detect the micelle formation. We found that the polymers used in this study also formed micelles above a certain polymer concentration (cmc) without adsorption at the air-water interface under a no-salt condition. Hence, we further confirmed that this phenomenon is universal for amphiphilic ionic block copolymer although it is hard to believe from current surface and interface science. For polymers with long hydrophobic chains (more than three times in length to hydrophilic chain), and at a high salt concentration, a slight adsorption of polymer was observed at the air-water interface. Long hydrophobic chain polymers showed behavior "normal" for low molecular weight ionic surfactants with increasing salt concentration. Hence, the origin of this curious phenomenon might be the macroionic nature of the hydrophilic part. Dynamic light scattering analysis revealed that the hydrodynamic radius of the block copolymer micelle was not largely affected by the addition of salt. The hydrophobic chain length-cmc relationship was found to be unusual; some kind of transition point was found. Furthermore, very interestingly, the cmc of the block copolymer did not decrease with the increase in salt concentration, which is in clear contrast to the fact that cmc of usual ionic small surfactants decreases with increasing salt concentration (Corrin-Harkins law). These behaviors are thought to be the special, but universal, characteristics of ionic amphiphilic diblock copolymers, and the key factor is thought to be a balance between the repulsive force from the water surface by the image charge effect and the hydrophobic adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号