首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements and observations have been made of the split of gas—liquid flow at a T junction where the main pipe was vertical and the side arm horizontal. All three pipes connecting to the junction were of 0.125 m dia. The gas and liquid flow rates were chosen to ensure annular flow in the inlet pipe. The resulting data have been compared with existing models.  相似文献   

2.
振荡管流换热的理论解   总被引:1,自引:0,他引:1  
本文从流体在管内振荡的运动方程和流体及管壁的能量方程出发,经过变量转换对常微分方程组进行求解,得到了计及管壁影响的振荡流体轴向换热的一般理论解。由这解,可以导出各种特殊条件下的表达式,包括已有的各种解析解。本解经数字化而制成各种图线,它们与已有的实验数据基本吻合。  相似文献   

3.
4.
Stereo particle image velocimetry (PIV) has been employed to study a vortex generated via tangential injection of water in a 2.25 inch (57 mm) diameter pipe for Reynolds numbers ranging from 1,118 to 63,367. Methods of decreasing pipe-induced optical distortion and the PIV calibration technique are addressed. The mean velocity field analyses have shown spatial similarity and revealed four distinct flow regions starting from the central axis of rotation to the pipe wall in the vortex flows. Turbulence statistical data and vortex core location data suggest that velocity fluctuations are due to the axis of the in-line vortex distorting in the shape of a spiral.  相似文献   

5.
Empirical correlation has been developed for local and average Nusselt numbers in the thermal entrance region of steady and pulsating turbulent air-flows in a pipe. The correlation was based on experimental data obtained from experiment carried out on a pipe heated under uniform heat flux conditions. The rate of flow was periodically varied at frequencies ranging from 1 Hz to 13 Hz while the average Reynolds number varied from 6400 to 42000. Received on 20 October 1998  相似文献   

6.
 An estimate of the low wavenumber component of surface turbulence shear stress as a function of frequency has been obtained through measurements of the correlations of the longitudinal component of turbulence velocity made close to the surface at y +=7. The data were acquired in a fully-developed turbulent pipe flow at a Reynolds number (based on centreline velocity and pipe diameter) of 268000, using two single hot-wire anemometer probes. A novel data analysis procedure has been introduced to establish the accuracy limits of the low wavenumber turbulence energy estimate for frequencies in the similarity regime of wall turbulence and the results are compared with other measurement techniques. Received: 18 November 1993/Accepted: 21 April 1997  相似文献   

7.
Experiments with refrigerant two-phase flow in a horizontal pipe have been performed and data on flow pattern, void fraction and pressure drop have been obtained. Refrigerants used were R12 and R22, and the range of saturation pressure was from 5.7 to 19.6 bar.In this paper, the experimental equipment and procedure are described in detail, and the data are both tabulated and presented graphically.  相似文献   

8.
On pipe diameter effects in surfactant drag-reducing pipe flows   总被引:3,自引:0,他引:3  
Remarkable power saving in a fluid transport system is possible if the surfactant drag reduction technology is used. Application of surfactant drag reduction to district heating and cooling systems has been investigated in the past. The establishment of the scale-up law in drag-reducing pipe flows is one of the most important problems in this application. Main purpose of this study is aimed to develop a reliable scale-up law in surfactant drag-reducing flows. As the basic data of surfactant solutions, both non-Newtonian viscosity and viscoelasticity were experimentally determined. A turbulent eddy diffusivity model based on the Maxwell model was employed to estimate the drag reduction of surfactant solutions. The predictions by the turbulence model developed in this study with proper rheological characteristics of surfactant solutions has resulted in a reliable estimation of the pipe diameter effect in surfactant drag-reducing flows over the pipe diameter range from 11 to 150mm. Received: 30 June 1997 Accepted: 29 December 1997  相似文献   

9.
The effects of elastic anisotropy in piping materials on fluid–structure interaction are studied for water-filled carbon-fiber reinforced thin plastic pipes. When an impact is introduced to water in a pipe, there are two waves traveling at different speeds. A primary wave corresponding to a breathing mode of pipe travels slowly and a precursor wave corresponding to a longitudinal mode of pipe travels fast. An anisotropic stress–strain relationship of piping materials has been taken into account to describe the propagation of primary and precursor waves in the carbon-fiber reinforced thin plastic pipes. The wave speeds and strains in the axial and hoop directions are calculated as a function of carbon-fiber winding angles and compared with the experimental data. As the winding angle increases, the primary wave speed increases due to the increased stiffness in the hoop direction, while the precursor wave speed decreases. The magnitudes of precursor waves are much smaller than those of primary waves so that the effect of precursor waves on the deformation of pipe is not significant. The primary wave generates the hoop strain accompanying the opposite-signed axial strain through the coupling compliance of pipe. The magnitude of hoop strain induced by the primary waves decreases with increasing the winding angle due to the increased hoop stiffness of pipe. The magnitude of axial strain is small at low and high winding angles where the coupling compliance is small.  相似文献   

10.
A map for the determination of flow pattern for two-phase flow of gas and non-Newtonian liquid in the vertical pipe has been presented. Our own experimental data confirm applicability of such a map.  相似文献   

11.
The present paper describes an experiment to study the response of the swirling flow in a pipe at a high Reynolds number to a rapid temporal change in swirl. The measurements have been conducted with 3D-LDV in a facility of special design that operates on the principle of refractive-index matching and in which swirl is generated in the flow by a tube-bundle in the pipe rotating about its own axis. The temporal change in swirl is effected by a computer controlled change of the angular velocity of the swirl generator. Measurement data from both cases, of increase and decrease of swirl, are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
In this paper the use of the mixed finite element method for stress analysis of reinforced conical branch pipe junctions subjected to internal water pressure is presented, branch pipe junction being considered as an intersection body of two thin conical shells. For the purpose of computing a large number of branch pipe junctions with different geometrical varieties, an automatical meshing routine has been up in the mixed FEM program with 3 geometrical parameters of the junctions to be varied, i.e., the angle included between axes of the main pipe and the branch pipe, the thickness of the wall of the shell and that of the reinforcing pad and the ratio of diameters of the branch pipe to that of the main pipe. The computer program has been provided functions to distinguish 8 kinds of different meshes and 12 sorts of elements, and to lay automatically coordinates of nodes as well as different boundary conditions of element. In this way, stress analyses of 101 junctions have been carried out and results of computations are excellent.  相似文献   

13.
Heat transfer coefficients were measured and new correlations were developed for two-phase, two-component (air and water) heat transfer in a horizontal pipe for different flow patterns. Flow patterns were observed in a transparent circular pipe using an air–water mixture. Visual identification of the flow patterns was supplemented with photographic data, and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air–water heat transfer experimental data with very good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.  相似文献   

14.
In the present work, the turbulent flow downstream a 90° pipe bend is investigated by means of stereoscopic particle image velocimetry. In particular, the three dimensional flow field at the exit of the curved pipe is documented for non-swirling and swirling flow conditions, with the latter being generated through a unique axially rotating pipe flow facility. The non-swirling flow was examined through snapshot proper orthogonal decomposition (POD) with the aim to reveal the unsteady behaviour of the Dean vortices under turbulent flow conditions, the so-called “swirl-switching” phenomenon. In respect to the swirling turbulent pipe flow, covering a wide range of swirl strengths, POD has been employed to study the effect of varying strength of swirl on the Dean vortices as well as the interplay of swirling motion and Dean cells. Furthermore, the visualised large scale structures in turbulent swirling flows through the bend are found to incline and tear up with increasing swirl intensity. The present time-resolved, three component, experimental velocity field data will provide a unique and useful database for future studies; in particular for the CFD community.  相似文献   

15.
Experiments have been carried out to determine the water depth required to entrain a given amount of air with a given circulating water flow discharging through a vertical pipe set in the flat bottom of a vessel. The circulation angle, , between the radial direction and the velocity vector far from discharge pipe was set at 0°, 10°, 30° or 60°.

It is shown that results are not dependent upon the diameter of the offtake pipe, if that is sufficiently small, and results are then expressed either as a dimensionless water depth vs a dimensionless ratio of the flow rates of the two phases or as a dimensionless flow rate of one phase vs the dimensionless flow rate of the other phase. An approximate theory describes trends in the data and is mostly in good quantitative agreement.

The results are used to examine the work of others on the entrainment of air or steam by water flowing along the bottom of a horizontal pipe into a small bottom offtake and the similar entrainment of water by air or steam flowing into a small top offtake. These systems occur in certain PWR loss of coolant accidents.  相似文献   


16.
Turbulent mixing of a passive scalar in fully developed turbulent pipe flow has been investigated by means of a Direct Numerical Simulation (DNS). The scalar is released from a point source located on the centreline of the pipe. The domain size of the concentration field has been chosen large enough to capture the different stages of turbulent mixing. Results are presented for mean concentration profiles, turbulent fluxes, concentration fluctuations, probability density functions and higher-order moments. To validate the numerical simulations the results are compared with experimental data on mixing in grid-turbulence that have been reported in the literature. The agreement between the experimental measurements and the computations is satisfactory. We have also considered the Probability Density Function (PDF). For small diffusion times and positions not on the plume centreline, our results lead to a PDF of an exponential form with a large peak at zero concentration. When the diffusion time increases, the PDF shifts from a exponential to a more Gaussian form.  相似文献   

17.
Experimental work on two-phase vertical upward flow was carried out using a 19 mm internal diameter, 7 m long pipe and studying the time series of cross-sectional average void fractions and pressure gradient which were obtained simultaneously. With the aid of a bank of published data in which the pipe diameter is the range from 0.5 to 70 mm, the effect of pipe diameter on flow characteristics of two-phase flow is investigated from various aspects. Particularly, the work focuses on the periodic structures of two-phase flow. Average film thicknesses and the gas flow rate where slug/churn and churn/annular flow transitions occur all increase as the diameter of the pipe becomes larger. On the other hand, the pressure gradients, the frequencies of the periodic structures and the velocities of disturbance waves decrease. The velocity of disturbance waves has been used to test the model of Pearce (1979). It is found that the suggested value of Pearce coefficient 0.8 is reasonable for lower liquid flow rates but becomes insufficient for higher liquid flow rates.  相似文献   

18.
A pure tone phenomenon has been observed at 460 Hz in a piping steam line. The acoustical energy has been identified to be generated in an open gate valve and to be of cavity noise type. This energy is then transmitted to the main pipe by fluid/structure coupling. The objectives here are to display the mechanism of the flow acoustic coupling in the cavity and in the duct through an aeroacoustical analysis and to understand the way of energy transfer from the fluid to the main pipe through a vibroacoustical analysis. Concerning the first objective, an experimental study by means of 2/7 scale models in air is analysed by means of numerical flow simulation. The flow acoustic phenomena are modelled by computing the Euler equations. Two different computations are carried out: in the first one, a pure Euler modelling is used, in the second one, a boundary layer obtained from experimental data is introduced in the computation in order to have a realistic flow profile upstream the cavity. The boundary layer flow profile appears to be essential to recover the experimentally observed coupling between the shear-layer instability and the acoustical transverse mode of the pipe. The numerical results confirm that the second aerodynamic mode is responsible for the oscillation. While the predicted frequency agrees about 1% with the scale model experiments, the predicted amplitude is approximately 15 dB too low. For the second objective, fluid/structure coupling in the main pipe is studied using two fully coupled methods. The first method consists in a modal analysis of the line using a fluid–structure finite element model. The second one is based on the analysis of dispersion diagrams derived from the local equations of cylindrical shells filled with fluid. The way of energy transfer in transverse acoustical waves coupled with flexion-ovalization deformations of the pipe is highlighted using both methods. The dispersion diagrams allow a fast and accurate analysis. The modal analysis using a finite-element model may complete the first one with quantitative data. The link between the fluid/acoustic and the fluid/structure analysis is then the excitation of the transverse acoustical mode of the duct.  相似文献   

19.
Based on an analogy to the Colebrook-White equation, a technique has been developed to allow polymer-solution extrapolation or “scaling” from one pipe size to another at constant values of ΔB. Each experimental data point can be transferred to a new pipe size by a simple, pocket-calculator method which preserves the experimental value of ΔB exactly. Thus scaling can be easily accomplished, without resorting to iteration or graphical techniques. The “negative-roughness” idea can also explain the loss of ΔB or drag reduction with increasing flow velocity.  相似文献   

20.
The standard k-ε model and three low-Reynolds number k-ε models were used to simulate pipe flow with a ring device installed in the near-wall region. Both developing and fully developed turbulent pipe flows have been investigated. Turbulence suppression for fully developed pipe flows revealed by hot-wire measurements has been predicted with all three low-Reynolds number models, and turbulence enhancement has been predicted by the standard k-ε model. All three low-Reynolds number models have predicted similar distributions of velocities, turbulence kinetic energy, and dissipation rate. For developing pipe flows, the region of turbulence suppression predicted by the three low-Reynolds number models is much more extensive (up to 30 pipe diameters downstream of the device) than for full developed flow; whereas the standard k-ε model has only predicted turbulence enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号