The iron complexes [(Et2Sb)4Fe4(CO)14] ( 1 ), [(nPr2Sb)4Fe3(CO)10] ( 2 ), [{(Me3SiCH2)2Sb}4Fe2(CO)6] ( 3 ), and [2‐(Me2NCH2)C6H4SbFe2(CO)8] ( 4 ) were prepared by reactions of distibanes with Fe2(CO)9. Compounds 1 – 4 were characterized by X‐ray diffraction, 1H NMR and IR spectroscopy as well as mass spectrometry; complex 1 was additionally characterized by density functional calculations. 相似文献
The influence of group 15 various substituents and effect of metal centers on metal-borane interactions and structural isomers of transition metal-borane complexes W(CO)5(BH3 · AH3) and M(CO)5(BH3 · PH3) (A = N, P, As, and Sb; M = Cr, Mo, and W), were investigated by pure density functional theory at BP86 level. The following results were observed: (a) the ground state is monodentate, η1, with C1 point group; (b) in all complexes, the η1 isomer with CS symmetry on potential energy surface is the transition state for oscillating borane; (c) the η2 isomer is the transition state for the hydrogens interchange mechanism; (d) in W(CO)5(BH3 · AH3), the degree of pyramidalization at boron, interaction energy as well as charge transfer between metal and boron moieties, energy barrier for interchanging hydrogens, and diffuseness of A increase along the series A = Sb < As < P < N; (e) in M(CO)5(BH3 · PH3), interaction energy is ordered as M = W > Cr > Mo, while energy barrier for interchanging hydrogens decreases in the order of M = Cr > W > Mo. 相似文献
Coulomb-dominated donor–acceptor interactions are, according to results of density functional calculations, the rationale for the extremely long Si–N distances (about 300 pm) in unusual hypercoordinate organosilicon compounds with seven- and eight-coordinate Si centers. The picture shows an example with sevenfold coordination. 相似文献
The electronic spectrum of the C60Fe(CO)4 complex was studied in a toluene solution. The more intense absorption of C60Fe(CO)4 in the visible region, relative to the free C60, can be attributed to the effect of lower symmetry of the C60 fullerene cage in C60Fe(CO)4 and, thus, relaxation of selection rules for forbidden internal electronic transitions of C60. No bands of the charge transfer from 3d(Fe) to C60 orbitals were observed in the visible region of the complex spectrum. Assignment of the bands was confirmed by semiempirical calculations of the electronic spectrum.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1453–1458, June, 1996 相似文献
The reaction of [Co(2)(CO)(8)] with (CF(3))(3)BCO in hexane leads to the Lewis acid-base adduct [Co(2)(CO)(7)CO--B(CF(3))(3)] in high yield. When the reaction is performed in anhydrous HF solution [Co(CO)(5)][(CF(3))(3)BF] is isolated. The product contains the first example of a homoleptic metal pentacarbonyl cation with 18 valence electrons and a trigonal-bipyramidal structure. Treatment of [Co(2)(CO)(8)] or [Co(CO)(3)NO] with NO(+) salts of weakly coordinating anions results in mixed crystals containing the [Co(CO)(5)](+)/[Co(CO)(2)(NO)(2)](+) ions or pure novel [Co(CO)(2)(NO)(2)](+) salts, respectively. This is a promising route to other new metal carbonyl nitrosyl cations or even homoleptic metal nitrosyl cations. All compounds were characterized by vibrational spectroscopy and by single-crystal X-ray diffraction. 相似文献
Bridge of Si's : Quantum‐chemical calculations suggest that the bonding situation in the recently synthesized “trisilaallene” is better described in terms of donor–acceptor interactions between two silylene ligands L and a naked silicon atom Si, which carries two lone‐pair orbitals, yielding the silylone SiL2. Further silylones SiL2 with different donor ligands Si have also been calculated, which might be possible to synthesize.
1INTRODUCTION In the past decades,mercury has been a very use-ful electrode material in the fabrication and electrical measurement of molecule modified metal-metal and metal-semiconductor junctions.Majda et al.[1,2]constructed a symmetric Hg-SCn-CnS-Hg junction to study the electron tunneling properties of alkanethio-late bilayers.Whitesides et al.[3~5]fabricated Hg-SAM/SAM-Metal(Ag,Au,Cu)junctions to investi-gate the electrical breakdown voltage of self-assem-bled monolayers(SAMs… 相似文献
The first halosilylene stable in solution was investigated by ab initio/NMR calculations (IGLO SOS-DFPT PW91/B2//B3LYP/6-31+G(d)). The delta (29)Si(calc) of (Me(3)Si)(3)CSiBr (446 ppm) does not agree with the measured NMR signal at 106 ppm assigned to the free halosilylene. From the possible silylene complexes in the reaction solution, two structures agree with the observed NMR signal: the (Me(3)Si)(3)CSiBr(2) anion (delta (29)Si(calc)=124 ppm) and the unsolvated and solvated complex of the anion with two Li(+) (delta (29)Si(calc)=117 and estimated 134 ppm). Additionally the delta (29)Si(calc) of alkylsilylenes, R-Si-X, ranging from 200 to 900 ppm are presented to guide NMR identification in future silylene synthesis. 相似文献
Electrochemical oscillations accompanying the formation of anodic silica have been shown in the past to be correlated with rather abrupt changes in the mechanical stress state of the silica film, commonly associated with some kind of fracture or porosification of the oxide. To advance the understanding on the origin of such oscillations in fluoride‐free electrolytes, we have revisited a seminal experiment reported by Lehmann almost two decades ago. We thereby demonstrate that the oscillations are not stress‐induced, and do not originate from a morphological transformation of the oxide in the course of anodisation. Alternatively, the mechanical features accompanying the oscillations can be explained by a partial relaxation of the field‐induced electrostrictive stress. Furthermore, our observations suggest that the oscillation mechanism more likely results from a periodic depolarisation of the anodic silica. 相似文献
The structures, properties and the bonding character for sub-carbonyl Si, SiCO and Si(CO)2, in singlet and triplet states have been investigated using complete-active-space self-consistent field (CASSCF), density
functional theory and second-order M?ller–Plesset methods with a 6-311+G* basis set. The results indicate that the SiCO species
possesses a 3∑− ground state, and the singlet 1Δ excited state is higher in energy than the 3∑− state by 17.3 kcalmol−1 at the CASSCF–MP2/6-311+G* level and by 16.4 kcalmol−1 at the CCSD(T)/6-311+G* level. The SiCO ground state may be classified as silene (carbonylsilene), and its COδ− moiety possesses CO− property. The formation of SiCO causes the weakening of CO bonds. The Si–C bond consists of a weak σ bond and two weak π
bonds. Although the Si–C bond length is similar to that of typical Si–C bonds, the bond strength is weaker than the Si–C bonds
in Si-containing alkanes; the calculated dissociation energy is 26.2 kcalmol−1 at the CCSD(T)/6-311+G* level. The corresponding bending potential-energy surface is flat; therefore, the SiCO molecule is
facile. For the bicarbonyl Si systems, Si(CO)2, there exist two V-type structures for both states. The stablest state is the singlet state (1A1), and may be referred to the ground state. The triplet state (3B1) is energetically higher in energy than the 1A1 state by about 40 kcalmol−1 at the CCSD(T)/6-311 + G* level. The bond lengths in the 1A1 state are very close to those of the SiCO species, but the SiCO moieties are bent by about 10°, and the CSiC angles are only
about 78°. The corresponding 3B1 state has a CSiC angle of about 54° and a SiCO angle of about 165°, but its Si–C and C–O bonds are longer than those in the
1A1 state by about 0.07 and 0.03 ?, respectively. This Si(CO)2 (1A1) has essentially silene character and should be referred to as a bicarbonyl silene. Comparison of the CO dissociation energies
of SiCO and Si(CO)2 in their ground states indicates that the first CO dissociation energy of Si(CO)2 is smaller by about 7 kcalmol−1 than that of SiCO; the average one over both CO groups is also smaller than that of SiCO. A detailed bonding analysis shows
that the possibility is small for the existence of polycarbonyl Si with more than three CO. This prediction may also be true
for similar carbonyl complexes containing other nonmetal and non-transition-metal atoms or clusters.
Received: 17 April 2002 / Accepted: 11 August 2002 / Published online: 4 November 2002
Acknowledgements. This work was supported by the National Natural Science Foundation of China (29973022) and the Foundation for Key Teachers
in University of the State Ministry of Education of China.
Correspondence to: Y. Bu e-mail: byx@sdu.edu.ch 相似文献
Modeling magnetism: The antiferromagnetic ground state of the C60/Si(001)‐c(4×4) surface is predicted by means of density functional theory calculations. Two adjacent dangling bonds (DBs) generated by the adsorption of C60 are antiferromagnetically coupled with each other. This study demonstrates that magnetic Si surfaces can be prepared by engineering single Si DBs with unpaired electrons.
In the presence of a molecular CoII catalyst, CO2 reduction occurred at much less negative potentials on Si photoelectrodes than on an Au electrode. The addition of 1 % H2O significantly improved the performance of the CoII catalyst. Photovoltages of 580 and 320 mV were obtained on Si nanowires and a planar Si photoelectrode, respectively. This difference likely originated from the fact that the multifaceted Si nanowires are better in light harvesting and charge transfer than the planar Si surface. 相似文献
A series of dinuclear complexes, [Tp(R)M--M'L(n)] [Tp(iPr(2) )M--Co(CO)(4) (1; M=Ni, Co, Fe, Mn); Tp(#)M--Co(CO)(4) (1'; M=Ni, Co); Tp(#)Ni--RuCp(CO)(2) (3')] (Tp(iPr(2) )=hydrotris(3,5-diisopropylpyrazolyl)borato; Tp(#) (Tp(Me(2),4-Br))=hydrotris(3,5-dimethyl-4-bromopyrazolyl)borato), has been prepared by treatment of the cationic complexes [Tp(iPr(2) )M(NCMe)(3)]PF(6) or the halo complexes [Tp(#)M--X] with the appropriate metalates. Spectroscopic and crystallographic characterization of 1-3' reveals that the tetrahedral, high-spin Tp(R)M fragment and the coordinatively saturated carbonyl-metal fragment (M'L(n)) are connected only by a metal-metal interaction and, thus, the dinuclear complexes belong to a unique class of xenophilic complexes. The metal-metal interaction in the xenophilic complexes is polarized, as revealed by their nu(CO) vibrations and structural features, which fall between those of reference complexes: covalently bonded species [R--M'L(n)] and ionic species [M'L(n)](-). Unrestricted DFT calculations for the model complexes [Tp(H(2) )Ni--Co(CO)(4)], [Tp(H(2) )Ni--Co(CO)(3)(PH(3))], and [Tp(H(2) )Ni--RuCp(CO)(2)] prove that the two metal centers are held together not by covalent interactions, but by electrostatic attractions. In other words, the obtained xenophilic complexes can be regarded as carbonylmetalates, in which the cationic counterpart interacts with the metal center rather than the oxygen atom of the carbonyl ligand. The xenophilic complexes show divergent reactivity dependent on the properties of donor molecules. Hard (N and O donors) and soft donors (P and C donors) attack the Tp(R)M part and the ML(n) moiety, respectively. The selectivity has been interpreted in terms of the hard-soft theory, and the reactions of the high-spin species 1-3' with singlet donor molecules should involve a spin-crossover process. 相似文献
The hydrolyzation behavior of the Si(OEt)x(OBut)4-x synthesized in part I was investigated by gas chromatogram/mass spectrum (GC/MS) technique. In the Si(OEt)x(OBut)4-x, Si(OEt)(OBut)3 showed more rapid hydrolysis than Si(OEt)2(OBut)2, especially in the initial stages of the hydrolyzation. The dimer and trimer formations along with the sol-gel course were followed during the hydrolyzation process. 相似文献
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXVI. Formation and Structure of [{ cyclo ‐P4(PtBu2)4}{Ni(CO)2}2] [{cyclo‐P4(PtBu2)4}{Ni(CO)2}2] is formed by reaction of the cyclotetraphosphane P4(PtBu2)4 with [Ni(CO)4]. Each Ni(CO)2 unit is coordinated by two adjacent tBu2P groups forming two five‐membered P4Ni rings above and below the planar cyclotetraphosphane ring, respectively. The compound crystallizes in the triclinic space group P 1 (No. 2) with a = 893.29(5), b = 1140.75(7), c = 1235.52(8) pm, α = 109.179(7), β = 100.066(7), γ = 97.595(7)° and Z = 1. 相似文献
The five‐coordinate ruthenium N‐heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr2Me2)4H][BArF4] ( 1 ; IiPr2Me2=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene; ArF=3,5‐(CF3)2C6H3), [Ru(IEt2Me2)4H][BArF4] ( 2 ; IEt2Me2=1,3‐diethyl‐4,5‐dimethylimidazol‐2‐ylidene) and [Ru(IMe4)4H][BArF4] ( 3 ; IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) have been synthesised following reaction of [Ru(PPh3)3HCl] with 4–8 equivalents of the free carbenes at ambient temperature. Complexes 1 – 3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about δ ?41. The tetramethyl carbene complex 3 exhibits a similar chemical shift in toluene, but shows a higher frequency signal in acetonitrile arising from the solvent adduct [Ru(IMe4)4(MeCN)H][BArF4], 4 . The reactivity of 1 – 3 towards H2 and N2 depends on the size of the N‐substituent of the NHC ligand. Thus, 1 is unreactive towards both gases, 2 reacts with both H2 and N2 only at low temperature and incompletely, while 3 affords [Ru(IMe4)4(η2‐H2)H][BArF4] ( 7 ) and [Ru(IMe4)4(N2)H][BArF4] ( 8 ) in quantitative yield at room temperature. CO shows no selectivity, reacting with 1 – 3 to give [Ru(NHC)4(CO)H][BArF4] ( 9 – 11 ). Addition of O2 to solutions of 2 and 3 leads to rapid oxidation, from which the RuIII species [Ru(NHC)4(OH)2][BArF4] and the RuIV oxo chlorido complex [Ru(IEt2Me2)4(O)Cl][BArF4] were isolated. DFT calculations reproduce the greater ability of 3 to bind small molecules and show relative binding strengths that follow the trend CO ? O2 > N2 > H2. 相似文献
The fac-[Re(CO)3(2,2′-biquinoline)Cl] complex has been obtained in reaction of Re(CO)5Cl with 2,2′-biquinoline. The compound has been studied by IR, UV–Vis spectroscopy and X-ray crystallography. The molecular orbital diagram of the tricarbonyl has been calculated with the density functional theory (DFT) method. The spin-allowed singlet–singlet electronic transitions of [Re(CO)3(2,2′-biquinoline)Cl] have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis. 相似文献