首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron donor-acceptor dyad ensembles of a water-soluble cationic zinc porphyrin (viz., zinc tetrakis(N-methylpyridinium)porphyrin tetrachloride, Zn(TMPyP)) and a C60 derivative that bears an imidazole ligand (viz., 2-(phenylimidazolyl)fulleropyrrolidine, C60im) were assembled during the formation of Langmuir and then Langmuir-Blodgett (LB) films. Surface pressure versus surface area isotherms and surface pressure time profiles, as well as Brewster angle microscopic images documented that the Langmuir films formed were remarkably stable. Subsequently, these Langmuir films were transferred onto different solid substrates, by using the LB technique, for spectroscopic and photoelectrochemical characterization. The UV-vis spectroscopic investigations confirmed that the water-soluble Zn(TMPyP) was, indeed, transferred together with C60im in the LB films. Upon visible light illumination of these LB films, deposited on the ITO transparent conductive supports, a photocurrent generated in the C60im-Zn(TMPyP) system is ascribed to an efficient photoinduced electron transfer from the electron donor, porphyrin singlet excited-state to the electron acceptor, C60. Overall, internal photon-to-current efficiency, IPCE, of the photoanodic current generation (with ascorbate as a sacrificial electron donor) in the ITO/C60im-Zn(TMPyP)/ascorbate/Pt construct is over 5x larger than that of the photocathodic system (with methyl viologen, MV2+, as a sacrificial electron acceptor) in the ITO/Zn(TMPyP)-C60im/MV2+/Pt construct. Highly ordered film stacking favors vectorial electron transfer within the dyad, giving rise to the highest IPCE values of 2.5% determined for a photoanode that was composed of around 20 monolayer films.  相似文献   

2.
A poly(heteroarylene methine) derivative, poly[(2,5-thiophenediyl) (p-n-methyl, n-octylaminobenzylidene) (2,5-thiophenequinodimethaneiyl)] (PTABQ), has been synthesized and spread at the air-water interface. The influences of three kinds of solutions on PTABQ monolayer behavior at the air-water interface have been investigated via the measurements of the pi-A isotherm and film stability. The results show that all three kinds of PTABQ solutions are apt to form the stable and transferable monolayer film organized with the plane of its pi-system nearly perpendicular to the air-water interface. Moreover, the monolayer-forming ability of PTABQ can be improved by introducing a water-soluble amphiphilie as an extractable spread-aiding component, which is further proved by the AFM images and FTIR spectra of the transferred films. UV-visible absorption spectra indicate that the well-ordered layer-by-layer structure is successfully controlled in the LB films. The optical bandgap of PTABQ is reduced for the ordered arrangement of its molecules in LB films. The intrinsic electrical conductivity of PTABQ LB films is 8.1 x 10(-8) S/cm and the conductivity of iodine-doped films is 5.7 x 10(-7) S/cm.  相似文献   

3.
The electrochemical properties of protoporphyrin IX zinc(II) (ZnPP) films on indium-tin oxide (ITO) substrate have been studied for three types of films with different arrangements, which were an adsorbed film of ZnPP and LB films of ZnPP and its hybrid with hexadecyltrimethylammonium bromide. Cyclic voltammetry (CV) measurement showed that, as the adsorbed amount of ZnPP increases, an irreversible oxidation peak of ZnPP film is intensified. This reveals that electrochemical properties depend on the adsorbed amount rather than the orientation of porphyrin molecules. It was also supported from CV measurement and ultraviolet-visible absorption spectroscopy that porphyrins adsorbed on ITO substrate were desorbed after the single scan of potential. Additionally, photoresponse of these ZnPP films was investigated by photocurrent measurement. The photocurrent generation is due to carboxylic acid moieties but not ZnPP macrocycles.  相似文献   

4.
By measuring the photoconductivity of hybrid LB films of exfoliative layered niobate and octadecylamine, it was evidenced that the film underwent a transition from an insulator to a photosemiconductor during photo-modification treatment by UV light, which was rationalized in terms of the direct contact of inorganic nanosheets achieved by the elimination of organic layers.  相似文献   

5.
We fabricated an efficient organic electrochemical transistor (OECT) composed of polymer Langmuir-Blodgett (LB) film. The pi-conjugated polymer LB film, which was constructed from a poly(N-dodecylacrylamide) (pDDA) and poly(3-hexylthiophene) (PHT) mixture, was used as a conduction channel layer to connect source and drain electrodes. The mixed-polymer LB film was characterized using UV-vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), and cyclic voltammetry. Subsequent UV spectra measurements, XRD measurements, and AFM measurements show that PHT forms a crystalline lamellar domain in the layered structure of pDDA. The OECT included 10 layers of the mixed-polymer LB film as the conduction channel layer. The OECT showed an on/off ratio of 1.1x10(4) and mobility of 7.5x10(-2) cm2 V(-1) s(-1) at low gate (VG=-1.2 V) and source-drain voltages (VDS=-0.5 V). Moreover, the necessary charge to operate the OECT was 1.1x10(-9) mol of e(-1) cm(-2), which was 2 orders smaller than the value reported using a similar device structure. The relatively high on/off ratio and low charge consumption suggest that this OECT, which is fabricated from pi-conjugated polymer LB films, is applicable to macroelectronic devices.  相似文献   

6.
A monolayer of dodecanethiol-encapsulated Au nanoparticles when compressed laterally transforms into layer-by-layer assemblies on water surface. These layer-by-layer assemblies of Au nanoparticles have been deposited on H-terminated Si(001) substrates by using one down-up cycle (two strokes) in the Langmuir-Blodgett (LB) method. The transformation from monolayer to layer-by-layer assembly on a water surface is irreversible; i.e., if the compressed film is decompressed the layer-by-layer structure cannot regenerate the monolayer structure. Unlike layer-by-layer growth, only odd numbers of layers grow from the monolayer on the H-terminated Si(001) substrates by using different numbers of down-up cycles. Z-type LB deposition occurs only in the first down-up cycle of the hydrophobic substrate, whereas Y-type LB deposition takes place in the successive cycles. Such layer-by-layer assemblies of Au nanoparticles, which are made on bare silicon surfaces and where thickness can be controlled at the nanoscale level, are very promising for their novel applications in the field of nanoscience.  相似文献   

7.
Semiconducting thin films consisting of regioregular poly(3-hexylthiophene) (RR-PHT) and poly(N-dodecylacrylamide) (pDDA) were constructed by the Langmuir-Blodgett (LB) technique. A mixture of RR-PHT and pDDA spread from a chloroform solution on a water surface forms a stable monolayer, which can be transferred onto solid substrates by the LB method, yielding a well-defined polymer LB film. Surface morphology studies of the LB film indicate that the RR-PHT is dispersed uniformly throughout the surface. The polymer thin film was chemically doped by contacting with FeCl3 acetonitrile solution, and a conductivity of 5.6 S/cm was achieved. Further, the LB film was utilized as the semiconducting film in the field-effect transistor (FET), and mobilities of 2.2 x 10(-4) and 4.4 x 10(-4) cm2 V(-1) s(-1) were obtained by analyzing the saturated and linear regions of the current-voltage characteristic, respectively.  相似文献   

8.
The photoelectrochemical properties of single-component and heterostructured layer-by-layer deposited films bearing tris(2,2'-bipyridine)ruthenium(II) (Ru) moieties were investigated by photocurrent measurements in solutions in the presence of sacrificial reagents. The photocurrent increased with an increase in the thickness of the films and then had a maximum at a thickness of 10 nm. This increase demonstrates a light-harvesting effect based on excitation energy migration among the Ru moieties to the film/electrolyte interface. A cathodic photocurrent was observed for a heterostructured film where bilayers bearing ferrocene (Fc) moieties and bilayers bearing Ru moieties were deposited on an indium tin oxide (ITO) substrate in the order (ITO/Fc/Ru). On the other hand, an anodic photocurrent was observed for the reverse order film (ITO/Ru/Fc). These results show that the direction of the photocurrent is determined by the gradient of the redox potentials formed in the heterostructured films. The internal quantum efficiency for the ITO/Ru/Fc film was twice that for the single-component film (ITO/Ru). This enhancement of the quantum efficiency is due to suppression of charge recombination by successive electron transfers in the heterostructured film.  相似文献   

9.
Densely packed exfoliated nanosheet films such as Ti0.91O2, Ti0.8M0.2O2 (M = Co, Ni), Ti0.6Fe0.4O2, and Ca2Nb3O10 on solid substrates were prepared by the LB transfer method without any amphiphilic additives at the air-water interface. Nanosheet crystallites covered nearly 95% on the solid surface with minimum overlapping of nanosheets. The LB transfer method of the Ti0.91O2 nanosheet monolayer film is applicable for not only hydrophilic substrates such as quartz, silicon, indium-tin oxide (ITO), and glass but also the hydrophobic Au surface. On the basis of these points, the LB transfer method has advantages compared to the alternating layer-by-layer method, which makes use of oppositely charged polyelectrolytes such as poly(ethylenimine) (PEI). Adsorption of hydrophobic Ti0.91O2 nanosheets at the air-water interface is responsible for this LB transfer deposition method. The addition of tetrabutylammonium bromide into the subphase assisted the adsorption, causing an increase in the adsorbed amount of Ti0.91O2 nanosheets at the air-water interface.  相似文献   

10.
Structural and optical properties of multilayer Langmuir-Blodgett (LB) films of two amphiphilic carbenium salts 2-didecylamino-6,10-bis(dimethylamino)-4,8,12-trioxatriangulenium hexafluorophosphate (ATOTA-1) and 2,6-bis(decylmethylamino)-10-dimethylamino-4,8,12-trioxatriangulenium hexafluorophosphate (ATOTA-2) are described. The LB films were prepared on lipophilic glass by standard vertical dipping. Grazing incidence X-ray diffraction (GIXD) measurements show that the planar organic cores, in spite of their positive charge, form closely packed columns with a repeating distance of ~3.45 ?. Specular X-ray reflectivity (SXR) reveals the LB multilayers to consist of Y-type bilayers with thickness 31 ? for ATOTA-1 and 41 ? for ATOTA-2. This significant difference is ascribed to the different packing motifs of the alkyl chains in the two LB films. GIXD and polarized UV-vis absorption and emission spectroscopy show that the columnar aggregates in the LB films are oriented along the dipping direction. This alignment is attributed to shear effects during LB transfer. The main absorption band of the LB films is blue-shifted compared to that in solution, while the fluorescence is red-shifted by more than 100 nm. These findings suggest the presence of H-aggregates in agreement with the cofacial packing derived from the X-ray measurements. Polarized absorption spectroscopy with variable angle of incidence was used to resolve two perpendicular optical transitions in the visible range, one at 460 nm polarized perpendicular to the columnar direction, in the plane of the film, and one at 420 nm polarized along the film normal.  相似文献   

11.
Hybrid films composed of amphiphilic molecules and clay particles were constructed by the modified Langmuir-Blodgett (LB) method. Clays used were sodium montmorillonite (denoted as mont) and synthetic smectite containing Co(II) ions in the octahedral sites (denoted as Co). Two kinds of amphiphilic molecules were used-[Ru(dC(18)bpy)(phen)2](ClO4)2 (dC(18)bpy = 4,4'-dioctadecyl-2,2'-bipyridyl and phen = 1,10-phenanthroline) (denoted as Ru) and octadecylammonium choloride (ODAH+Cl- or denoted as ODAH). Three kinds of hybrid films (denoted as Ru-mont, Ru-Co, and ODAH-Co films) were prepared by spreading an amphiphilic molecule onto an aqueous suspension of a clay. Atomic force microscopy (AFM) analyses of the films deposited on silicon wafers indicated that closely packed films were obtained at 20 ppm for all the above three cases. Cyclic voltammetry (CV) was measured on an ITO electrode modified with a hybrid film or a monolayer film of pure Ru(II) complex salt (denoted as Ru film). The Ru(II) complexes incorporated in the Ru-mont film lost their redox activity, indicating that montmorillonite layers acted as a barrier against electron transfer. In contrast, the same complexes in the Ru-Co film were electrochemically active with the simultaneous appearance of the redox peaks due to the Co(II)/Co(III) (or Co(II)/Co(IV)) couple. The results implied that electron transfer through cobalt clay layers was possible via mediation by Co(II) ions in a clay sheet. For an aqueous solution containing nitrite ions (NO2-) at pH 3.0, a large catalytic oxidation current was observed for both the electrodes modified with the Ru-mont and Ru-Co films. The results were interpreted in terms of the mechanisms that the charge separation of an incorporated Ru(II) complex took place to produce a pair of a Ru(III) complex and an electron and that the generated Ru(III) complex was reduced by a nitrite ion before it recombined with the electron.  相似文献   

12.
Sun Z  Li Y  Zhou T  Liu Y  Shi G  Jin L 《Talanta》2008,74(5):1692-1698
In this paper, layer-by-layer (LBL) {MSU/Hb}(n)/PDDA films assembled by alternate adsorption of positively charged hemoglobin (Hb) and negatively charged mesoporous molecular sieves of Al-MSU-S onto a glassy carbon electrode (GCE) were reported. Al-MSU-S was synthesized by the precursor of zeolite Y and ionic liquids 1-hexadecane-3-methylimidazolium bromide (CMIMB) as a template in basic medium. It exhibited larger pore diameter, pore volume and surface area. Direct electrochemical and electrocatalytic properties of Hb in these layer-by-layer films were investigated. A pair of well-defined nearly reversible cyclic voltammetric peaks was observed and the formal potential of the heme Fe(III)/Fe(II) redox couple was found to be -0.295V (vs. SCE). The influences of layer's number and the pH of the external solution to the electron transfer behavior of Hb in {MSU/Hb}(n)/PDDA films were also estimated by cyclic voltammetry and a set of optimized conditions for film fabrication was inferred. The hemoglobin in{MSU/Hb}(n)/PDDA films displayed a good electrocatalytic activity to the reduction of hydrogen peroxide, which had linear current responses from 1.0 x 10(-6) to 1.86 x 10(-4)mol/L with the detection limit of 5.0 x 10(-7)mol/L (S/N=3). The apparent Michaeli-Menten constant (K(m)(app)) was 0.368 mmol/L. Thus, this methodology shows potential application of the preparation of third-generation biosensors.  相似文献   

13.
用XPS对沉积在硅基片上的聚酰亚胺LB膜以及由它真空热解制备的SiC薄膜进行了研究 ,并对其形成过程进行了跟踪分析 .XPS结果显示聚酰亚胺LB膜结构均匀 ,质量良好 ;真空热解时 ,约在 6 70℃时LB膜中的C与衬底Si反应形成SiC ;Ar离子溅射深度俄歇谱表明所制备的SiC膜中Si和C浓度成梯度分布 ,说明SiC是由Si和C相互扩散反应形成的  相似文献   

14.
细菌视紫红质(bacteriorhodopsin,用bR表示)是嗜盐菌(halobacterium halobium)紫膜中发现的唯一蛋白质,由于具有独特质子泵和光色互变功能以及高稳定性,而成为理想的生物材料。在光照下,它产生典型的微分脉冲电信号[1],而且响应快,这对于它在信息存储、仿视觉系统等应用方面有极大的应用前景。  相似文献   

15.
A combination of electrochemistry and luminescence methods was exploited to obtain information on the electrochemical activity and homogeneity of Nafion Langmuir-Blodgett films. The redox behavior of the Ru(bpy)3(2+) probe incorporated in the Nafion film was monitored by epifluorescence microscopy. The photoluminescent images, recorded by a charge-coupled device (CCD) camera, reflect the distribution of the probe in the film, which resulted as very uniform, particularly in comparison with spin-coated films. Apparent diffusion coefficients (Dapp) determined by cyclic voltammetry for films of less than 10 layers are in the range of 1 x 10(-12) to 8 x 10(-12) cm(2) s(-1), that is, 2 orders of magnitude lower than values reported in the literature for spin-coated Nafion films. The application to the electrode of a potential able to oxidize the luminescent Ru(bpy)3(2+) to the nonluminescent Ru(bpy)3(3+) switched off the photoluminescence with a response time that for the LB films was much shorter than that for the spin-coated ones. Experimental evidence and calculations indicate that lowering of the film thickness down to the nanometric level is very effective in shortening the switching time, notwithstanding the lowering of the Dapp value in LB films.  相似文献   

16.
We use conductive-probe atomic force microscopy (CP-AFM) to characterize and image hybrid electrode structures comprising mesoporous manganese oxide (MnO2) ambigel nanoarchitectures coated with an ultrathin (<10 nm) electrodeposited layer of poly(o-phenylenediamine), PPD. Native MnO2 ambigel films, supported on indium tin oxide (ITO) substrates, exhibit spatially uniform conductivity that correlates well with the topography of the MnO2 film, confirming that the nanoscopic oxide network is effectively wired to the underlying ITO substrate. Following the self-limiting electrodeposition of the PPD coating onto the high-surface-area (>200 m2 g(-1)) MnO2 ambigel, the resulting hybrid structures display an approximately 20-fold reduction in conductivity, as determined from CP-AFM measurements. The CP-AFM imaging studies confirm that the ultrathin, insulating PPD layer conformally and homogeneously coats the conductive nanoarchitecture. CP-AFM imaging of PPD-MnO2 hybrid electrodes following electrochemical cycling in an aqueous acid electrolyte reveals that the ultrathin PPD coating serves as an effective barrier to the electrolyte, protecting the underlying MnO2 nanoarchitecture from electrochemical dissolution.  相似文献   

17.
The formation of inorganic-organic hybrid films of a titania nanosheet and an amphiphilic alkylammonium cation has been investigated, and the photocatalytic decomposition of the alkylammonium cation in the film has been pursued. When a solution of the amphiphilic alkylammonium salt (octadecylammonium chloride: ODAH+ Cl-) was spread on an interface between the air and a titania nanosheet suspension, the negatively charged nanosheets were adsorbed onto the floating monolayer of ODAH+ to form a hybrid monolayer. The hybridization was confirmed by pi-A isotherm measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. Multilayered films were fabricated in a layer-by-layer way by transferring the hybrid monolayers onto glass plates. Areas per ODAH+ cation in the films were estimated from the infrared (IR) spectra of the films, but these areas were smaller than those estimated from the pi-A isotherm curves. The orientation of the alkyl chain of ODAH+ in the hybrid film was determined by means of polarized IR spectroscopy. The alkyl chains were tilted 41 +/- 1 degrees and 47 +/- 1 degrees from the surface normal for the films prepared from the 8 and 20 ppm (ppm = mg dm(-3)) suspensions, respectively. Together with X-ray diffraction data of the films, the structure of the hybrid film was discussed. When the films were illuminated with a UV light, the absorption intensities due to the alkyl chain of ODAH+ decreased exponentially, indicating the photocatalytic decomposition of ODAH+ by the titania nanosheets in the films. Deviation from the exponential trend in the decomposition rate was observed in the initial period for the hybrid films prepared from the suspensions at low concentrations. Interestingly, the layered structure of the hybrid film was disturbed significantly after the ODAH+ cations were decomposed.  相似文献   

18.
19.
Electroactive nanostructured films of chitosan (Ch) and tetrasulfonated metallophthalocyanines containing nickel (NiTsPc), copper (CuTsPc), and iron (FeTsPc) were produced via the electrostatic layer-by-layer (LbL) technique. The multilayer formation was monitored with UV-vis spectroscopy by measuring the increase of the Q-band absorption from metallophthalocyanines. Results from transmission and reflection infrared spectroscopy suggested specific interactions between SO(3)(-) groups from metallophthalocyanines and NH(3)(+) from chitosan. The electroactive multilayered films assembled onto an ITO electrode were characterized by cyclic voltammetry, with Ch/NiTsPc films showing higher stability and well-defined voltammograms displaying reversible redox peaks at 0.80 and 0.75 V. These films could be used to detect dopamine (DA) in the concentration range from 5.0 x 10(-6) to 1.5 x 10(-4) mol L(-1). Also, ITO-(Ch/NiTsPc)(n)() electrodes showed higher electrocatalytic activity for DA oxidation when compared with a bare ITO electrode. On the other hand, only the Ch/FeTsPc and Ch/CuTsPc modified electrodes could distinguish between DA and ascorbic acid. These results demonstrate that versatile electrodes can be prepared by incorporation of different metallophthalocyanine molecules in LbL films, which may be used in bioanalytical applications.  相似文献   

20.
适合倍频光波导的多层LB膜结构研究   总被引:2,自引:0,他引:2  
制备非中心对称的NMOB/CdA交替Y型累积LB膜,测量了它的二阶非线性光学特性.为了改善多层膜的有序性,研究在拉制NMOB/CdA多层膜时提高膜均匀性的两种方法,增强了它的二阶非线性光学特性.最后,制备光栅耦合的NMOB/CdA多层膜光波导,测量了它的Cerenkov相位匹配光学二次谐波产生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号