首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The electrospinning technique has attracted significant research attention because of its various potential applications and simplicity of manufacturing fibers of diameter from several micrometers to nanometer range. However, the methods for controlling the shape, structure, and uniformity of electrospun fibers have not yet been fully investigated. In this research electrospinning instabilities, such as cyclical electrospinning fluctuation and multi-jet ejections, which are closely related to the corresponding nanofiber deposition, were investigated for various polymer solution concentrations. The cyclical electrospinning fluctuation was evaluated with an image analysis program integrated with an image acquisition system that we developed. Two different drop size fluctuations of the cyclical process of the drop formation were observed.  相似文献   

2.
Electrospinning provides a straightforward method to produce polymer fibers with nanoscale diameters. Although the setup for electrospinning is simple and convenient, the spinning mechanism itself is quite complicated. A complete understanding of this mechanism remains to be elucidated and the factors that govern fiber formation are not well understood. In this study, we investigate the electrospinning instabilities by observing the electrospinning jet behaviors with various photographic exposure times ranging from 1/100 to 1/10,000 of a second and the corresponding fiber depositions. We propose an electrospinning mechanism responsible for producing nanoscale fibers and their deposition patterns.  相似文献   

3.
In recent years drug-loaded nanofibers prepared using solution electrospinning methods have been actively studied. However, there are a number of problems connected to their solution electrospinning with respect to medical applications because of the hazards associated with the residual solvents. To avoid the use of solvents in this study we prepared and evaluated drug-loaded polylactide (PLA) fiber webs using a laser-electrospinning (LES) type of a melt electrospinning process. The structures and properties of the obtained drug-loaded PLA fiber webs were evaluated by scanning electron microscopy, fluorescence microscopy, wide-angle X-ray diffraction and UV–vis spectrometry. As shown by the various characterization techniques, we employed LES to prepare PLA nanofiber webs with average fiber diameters of 4.21 and 0.67?μm. Additionally, the webs were loaded with argatroban, a thrombin inhibitor, resulting in amorphous structures for both the argatroban and the PLA matrix. An in-vitro investigation of the drug release behavior of the webs revealed that higher release rates occurred for the fiber samples with the small fiber diameters, particularly in comparison with melt spun fibers with an average diameter of 150?μm. Overall, we expect that the herein described drug-loaded PLA nanofiber webs can be applied as medical materials with drug delivery system functions.  相似文献   

4.
Electrospinning, a technology capable of fabricating ultrafine fibers (microfibers and nanofibers), has been investigated by various research groups for the production of fibrous biopolymer membranes for potential medical applications. In this study, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), a natural, biocompatible, and biodegradable polymer, was successfully electrospun to form nonwoven fibrous mats. The effects of different electrospinning parameters (solution feeding rate, applied voltage, working distance and needle size) and polymer solution properties (concentration, viscosity and conductivity) on fiber diameter and morphology were systematically studied and causes for these effects are discussed. The formation of beaded fibers was investigated and the mechanism presented. It was shown that by varying electrospinning parameters within the processing window that was determined in this study, the diameter of electrospun PHBV fibers could be adjusted from a few hundred nanometers to a few microns, which are in the desirable range for constructing “biomimicking” fibrous scaffolds for tissue engineering applications.  相似文献   

5.
Electrosprays have diverse applications including protein analysis, electrospinning, and nanoencapsulation for drug delivery. We show that a variety of electrospray regimes exhibit fundamental analogy with the nonlinear dynamics of a dripping faucet. The applied voltage in electrosprays results in additional period doublings and temporal order-chaos-order transitions. Attractors in the return maps show logarithmic self-similarity in time, suggesting self-similar capillary waves on the meniscus. The bifurcations in ejection time can be explained by phase variations between capillary waves and pinch-off conditions and by ejection mode changes due to contact angle variations.  相似文献   

6.
We developed a temperature-controlled electrospinning apparatus specially for the polymers/IL system with high viscosity and surface tension and investigated the electrospinning of polyacrylonitrile (PAN)/1-butyl-3-methyl-imidazolium bromide ([BMIM][Br]) solutions. The rheological behaviors, surface tensions and conductivities of PAN/[BMIM]/[Br] solutions at different temperatures indicated that appropriately increasing the temperature is beneficial to their spinnability. It is also shown that PAN/[BMIM]/[Br] with a concentration of 3 wt%, 4 wt% and 5 wt% can be electrospun to fibers by increasing their temperatures to 70°C, 75°C or 85°C, respectively. A rotating drum composed of a dacron mesh was used as a collector in order to avoid the contraction of the wet fibers. This present study provides an alternative method for electrospinning polymer fibers.  相似文献   

7.
Silica nanofibers were developed by a combination of an electrospinning technique and the sol–gel method. In the process, tetraethoxysilane (TEOS), polyvinylpyrrolidone (PVP) and N, N-Dimethylformamide (DMF) were the components of the sol for the production of silica/PVP composite nanofibers by electrospinning. During a thermal treatment, PVP in the hybrid fibers was removed; in this way, we produced ultrafine crystalline silica nanofibers. Scanning electron microscopy, energy dispersive X-ray analyzer, X-ray diffraction, and Fourier transform infrared spectroscopy were used to characterize the nanofibers. These silica nanofibers should be potentially useful in catalyst support, adsorbent, energy storage, and gas storage applications.  相似文献   

8.
In this paper, we fabricated a TiO2 mesh with ultra-fast spreading superhydrophilic property without UV irradiation. Through electrospinning process followed by calcinations, we obtained meshes with special micropores and nanochannels composite hierarchical structures. Each fiber exhibits a bundle structure of aligned elementary filaments with nanochannels, which should be resulted from phase separation and stretch of electrostatic force during electrospinning process. The mesh shows ultra-fast spreading property within only tens of milliseconds (ms). It is concluded that the special topography offered a multi-scale 3D capillary effect that play crucial role in ultra-fast spreading superhydrophilic property of the mesh. This study provides interesting insights to design novel materials concerning liquid transport and dissipation, which may find its way in various applications.  相似文献   

9.
Dye-doped polymer micro- and nanofibers with tailored light emission properties have great potential for applications in optical, optoelectronic, or photonic devices. In this study, these types of structures were obtained by electrospinning rhodamine 6 G-doped polyvinylpyrrolidone (PVP) using a polymer solution of 10% (mass) concentration in ethanol. Polymer nanofibers with different morphologies (smooth and beaded) and diameters of about 500 nm were obtained using different electrospinning conditions with the same solutions. Fluorescence optical microscopy observations showed that the dye was distributed uniformly in the doped PVP nanofibers. Different shifts were observed when we compared the wavelength of the dye emission band peak of the smooth nanofibers (566 nm) and the wavelength of the dye emission band peak of the beaded fibers (561.5 nm) produced by electrospinning in different conditions with the wavelength of the emission band peak for transparent thin films produced by spin coating (558 nm) using the same polymer solution. This demonstrates that it is possible to tune the optical properties of electrospun dye-doped polymer nanofibers simply by modifying the morphology of the material, i.e., the parameters of the electrospinning process.  相似文献   

10.
静电纺丝技术是采用物理方法制备一维采用纳米纤维的有效方法,它在大规模制备有序的、复杂的一维纳米材料方面具有很强优势。除了制备一维纤维材料外,电纺丝技术还用于制备二维和三维多孔结构的材料。本文分为三部分,首先介绍了静电纺丝技术的原理和方法;然后综述了静电纺丝技术在制备一维材料方面的研究进展,最后列举了静电纺丝技术在生物工程领域的应用。  相似文献   

11.
A facile method is presented for the electrospinning of multiple polymer jets into nanofibers. The experiments in this study electrified 7 wt% polyethylene oxide (PEO) and 10 wt% poly(vinylidene fluoride) (PVDF) solutions and adopted porous materials (bars with various dimensions) to enhance the productivity of the electrospinning process. The proposed electrospinning mechanism can be used to mass produce nanofibers at a relatively lower voltage (D.C. 6~7 kV) and obtain a remarkable increase in throughput. The experimental results showed that the jets per area were on the order of 0.85~1.5 jets/mm2, which is one to two orders of magnitude higher than the conventional single needle electrospinning process and can easily surpass the magnetic needleless method by a factor of 3.3–5.8. The proposed method of using porous materials as electrospinning devices (nozzles) should contribute to the advancement of next-generation, large-scale electrospinning systems for nanofiber fabrication.  相似文献   

12.
In this paper, we develop an effective electric-field-assisted electrospinning method for the controlled deposition of poly(vinyl pyrrolidone) fibers. The electric field distribution becomes uniform and convergent due to the introduction of a metal plate and a focusing aid into the conventional electrospinning setup. As a result, the bending instability is suppressed and the jet is restricted to moving to the collector along a straight line. Helical structure of fibers with lateral width of about 10 μm is formed and aligned on a rotating substrate. The morphology of helical fibers can also be effectively adjusted by varying the collecting velocity.  相似文献   

13.
Nanostructured ternary/mixed transition metal oxides have attracted considerable attentions because of their high‐capacity and high‐rate capability in the electrochemical energy storage applications, but facile large‐scale fabrication with desired nanostructures still remains a great challenge. To overcome this, a facile synthesis of porous NiCoO2 nanofibers composed of interconnected nanoparticles via an electrospinning–annealing strategy is reported herein. When examined as anode materials for lithium‐ion batteries, the as‐prepared porous NiCoO2 nanofibers demonstrate superior lithium storage properties, delivering a high discharge capacity of 945 mA h g?1 after 140 cycles at 100 mA g?1 and a high rate capacity of 523 mA h g?1 at 2000 mA g?1. This excellent electrochemical performance could be ascribed to the novel hierarchical nanoparticle‐nanofiber assembly structure, which can not only buffer the volumetric changes upon lithiation/delithiation processes but also provide enlarged surface sites for lithium storage and facilitate the charge/electrolyte diffusion. Notably, a facile synthetic strategy for fabrication of ternary/mixed metal oxides with 1D nanostructures, which is promising for energy‐related applications, is provided.  相似文献   

14.
Polymer meshes have recently attracted great attention due to their great variety of applications in fields such as tissue engineering and drug delivery. Poly(?-caprolactone) nanofibers were prepared by electrospinning giving rise to porous meshes. However, for some applications in tissue engineering where, for instance, cell migration into the inner regions of the mesh is aimed, the pore size obtained by conventional techniques is too narrow. To improve the pore size, laser irradiation with femtosecond pulses (i.e., negligible heat diffusion into the polymer material and confined excitation energy) is performed. A detailed study of the influence of the pulse energy, pulse length, and number of pulses on the topography of electrospun fiber meshes has been carried out, and the irradiated areas have been studied by scanning electron microscopy, contact angle measurements and spectroscopic techniques. The results show that using the optimal laser parameters, micropores are formed and the nature of the fibers is preserved.  相似文献   

15.
Abstract

Electrospinning, as an effective method for preparation of scaffolds for cell growth templates, has attracted great attention. In this study electrospinning was used to prepare poly (vinyl alcohol) (PVA)/chitosan scaffolds for bone tissue engineering. In order to improve the bioactivity and mechanical properties of the fibrous scaffolds, 0.5, 1 and 2?wt% akermanite, a calcium silicate based bioceramic, was added to the electrospinning solution. The morphology of the electrospun scaffolds was observed by using field emission-scanning electron microscopy and their mechanical strengths were analyzed by tension tests. The results showed that the formed scaffolds consisted of fibers with less than 100?nm diameter. In the case of the composite containing 1?wt% akermanite, the fibers were more homogeneous and no beads were formed during electrospinning, while in the composite containing 2?wt% akermanite a considerable number of beads were formed which we attribute to an improper viscosity of the electrospinning solution. Among the different compositions, the composite containing 1?wt% akermanite showed higher ultimate tensile strength (10.6?MPa) and fracture strain (9%). These values were increased by crosslinking the scaffold by reaction with glutaraldehyde, up to 13?MPa and 9.4%, respectively.  相似文献   

16.
The electric field is one of the most critical parameters in electrospinning process. This study provides a comprehensive electric field analysis of a multifunctional electrospinning platform performed by FEMM 4.2. In this paper firstly information about the electrospinning method is mentioned. Electric field distribution of the multifunctional electrospinning platform is analyzed in different voltage levels. The effect of the applied voltage between the needles and the collector on nanofibers is investigated which are collected on the chassis. Furthermore the analysis results clearly demonstrated the effect of electrostatic force on the multiple jets which are at the needle tips.  相似文献   

17.

The fiber spinning technique of electrospinning has been optimized in order to prepare unidirectionally aligned and structurally oriented fibers. For this paper, we designed a new device based on a 2D period collector fabrication and electrostatic fields analysis to obtain a large area latticework fibers pattern. The pattern was composed of polyvinylpyrrolidone (PVP)‐based sub‐micron fibers with diameters ranging from 910 nm to 1300 nm, which have potential applications in tissue cell cultures.  相似文献   

18.
It has been successfully developed by the electrospinning technology that AgCl nanoparticles were incorporated into polymer fiber. In this paper, we chose poly(vinyl pyrrolidone) (PVP) because it was not only a good material for electrospinning but also it was excellent capping reagent of various metal nanoparticles. The silver ions interacted with the carbonyl groups in the PVP molecules. The formation of AgCl nanoparticles inside the PVP were carried out via the reaction of silver ions and HCl. TEM proved that most of the AgCl nanoparticles were uniformly dispersed in the PVP fibers.  相似文献   

19.
Non-adiabatic tapered fibers are basic photonic components used in a wide range of applications. Here we investigate a way to increase their utility through the controllable bending of one of their tapered sections. The experiments carried out explain, for the first time, the mechanics of this approach showing how these tapers can be used to build more sensitive sensors. Their use as highly efficient mode converters is also discussed.  相似文献   

20.
TiO2 nanoparticles were introduced into the soluble sulfonium precursor of PPV (Poly(p-phenylene vinylene)) during the synthesis procedure of precursor. Later, PPV–TiO2 nanofibers were prepared by electrospinning of precursor–TiO2 solution, followed by thermal conversion. The fluorescence microscopy images showed that the resulting nanofibers exhibited outstanding emission properties. No significant differences were observed in photoluminescence spectra of PPV–TiO2 and PPV fibers. A single oriented PPV–TiO2 nanofiber can be obtained on the substrate by a modified electrospinning method, which is favorable for some practical applications such as electrical and optical nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号