首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel triazene, 4‐[(E)‐2‐(4‐cyanophenyl)diazenyl]‐morpholine ( 1 ) was prepared via a diazonium ion coupling reaction between 4‐aminobenzonitrile and morpholine. The x‐ray structure of 1 was determined and evidenced π delocalization in the triazene subunit. The room temperature absorption spectrum of 1 in acetonitrile was dominated by an intense triazene‐centered π→π* transition at 325 nm. Compound 1 was observed to be luminescent, with an emission maximum at 434 nm in room temperature acetonitrile solution. The emission spectrum of 1 in propionitrile glass at 77K exhibited a narrowed emission band with a maximum at 449 nm. Broad emission from 400–700 nm with poorly resolved vibrational structure was observed from solid 1 at room temperature. J. Heterocyclic Chem., 2011.  相似文献   

2.
A new thiotetrazole compound, 4‐((1‐phenyl‐1H‐tetrazol‐5‐ylthio)methyl) benzoic acid ( 1 ), has been synthesized and characterized by elemental analysis, 1H and 13C NMR, ESI‐MS, FT‐IR, UV–vis, fluorescence spectra, and single‐crystal X‐ray diffraction analysis. The structural analysis reveals that compound 1 adopts a nonplanar geometric structure and exhibits an extensive but not uniform π delocalization with all members of the tetrazolyl ring and the exocyclic sulfur atom. A density functional theory (DFT) calculation at B3LYP/6‐31G** level of theory was performed to elucidate the structure of this thiotetrazole system. And the time‐dependent DFT (TD‐DFT) calculations of absorption spectra reveal two electron‐transition bands derived from the contribution of π → π* transitions, which are in agreement with experimental results. Moreover, compound 1 exhibits a blue‐light emission (λem = 441 nm) in the solid state at room temperature. © 2012 Wiley Periodicals, Inc. Heteroatom Chem 23:435–443, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21034  相似文献   

3.
1N‐Phenyl‐3‐(2,4‐dichlorophenyl)‐5‐(4‐chlorophenyl)‐2‐pyrazoline has been synthesized and characterized by elemental analysis, IR, UV‐Vis and X‐ray single crystal diffraction. Density functional calculations have been carried out for the title compound by using the B3LYP method with a 6‐311G** basis set. The calculated results show that the predicted geometry can reproduce well the structural parameters. The electronic absorption spectra calculated in the gas phase are better than those calculated in EtOH solvent to model the experimental electronic spectra. Natural Bond Orbital (NBO) analyses suggest that the above electronic transitions are mainly assigned to π → π* transitions. On the basis of vibrational analyses, the thermodynamic properties of the compound at different temperatures have been calculated, revealing the correlations between C0p, m, S0m, H0m and temperature.  相似文献   

4.
An electronically push–pull type dimethylaminoazobenzene–fullerene C60 hybrid was designed and synthesized by tailoring N,N‐dimethylaniline as an electron donating auxochrome that intensified charge density on the β‐azonitrogen, and on N‐methylfulleropyrrolidine (NMFP) as an electron acceptor at the 4 and 4′ positions of the azobenzene moiety, respectively. The absorption and charge transfer behavior of the hybrid donor‐bridge‐acceptor dyad were studied experimentally and by performing TD‐DFT calculations. The TD‐DFT predicted charge transfer interactions of the dyad ranging from 747 to 601 nm were experimentally observed in the UV‐vis spectra at 721 nm in toluene and dichloromethane. A 149 mV anodic shift in the first reduction potential of the N?N group of the dyad in comparison with the model aminoazobenzene derivative further supported the phenomenon. Analysis of the charge transfer band through the orbital picture revealed charge displacement from the n(N?N) (nonbonding) and π (N?N) type orbitals centered on the donor part to the purely fullerene centered LUMOs and LUMO+n orbitals, delocalized over the entire molecule. The imposed electronic perturbations on the aminoazobenzene moiety upon coupling it with C60 were analyzed by comparing the TD‐DFT predicted and experimentally observed electronic transition energies of the dyad with the model compounds, NMFP and (E)‐N,N‐dimethyl‐4‐(p‐tolyldiazenyl)aniline (AZNME). The n(N?N) → π*(N?N) and π(N?N) → π*(N?N) transitions of the dyad were bathochromically shifted with a significant charge transfer character. The shifting of π(N?N) → π*(N?N) excitation energy closer to the n → π*(N?N) in comparison with the model aminoazobenzene emphasized the predominant existence of charge separated quinonoid‐like ground state electronic structure. Increasing solvent polarity introduced hyperchromic effect in the π(N?N) → π*(N?N) electronic transition at the expense of transitions involved with benzenic states, and the extent of intensity borrowing was quantified adopting the Gaussian deconvolution method. On a comparative scale, the predicted excitation energies were in reasonable agreement with the observed values, demonstrating the efficiency of TD‐DFT in predicting the localized and the charge transfer nature of transitions involved with large electronically asymmetric molecules with HOMO and LUMO centered on different parts of the molecular framework. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

5.
The photoluminescence spectra of a series of 5‐substituted pyridyl‐1,2,3‐triazolato PtII homoleptic complexes show weak emission tunability (ranging from λ=397–408 nm) in dilute (10?6 M ) ethanolic solutions at the monomer level and strong tunability in concentrated solutions (10?4 M ) and thin films (ranging from λ=487–625 nm) from dimeric excited states (excimers). The results of density functional calculations (PBE0) attribute this “turn‐on” sensitivity and intensity in the excimer to strong Pt–Pt metallophilic interactions and a change in the excited‐state character from singlet metal‐to‐ligand charge transfer (1MLCT) to singlet metal‐metal‐to‐ligand charge transfer (1MMLCT) emissions in agreement with lifetime measurements.  相似文献   

6.
The synthesis of a number of new 2,2′‐bipyridine ligands functionalized with bulky amino side groups is reported. Three homoleptic polypyridyl ruthenium (II) complexes, [Ru(L)3]2+ 2(PF6?), where L is 4,4′‐dioctylaminomethyl‐2,2′‐bipyridine (Ru4a), 4,4′‐didodecylaminomethyl‐2,2′‐bipyridine (Ru4b) and 4,4′‐dioctadodecylaminomethyl‐2,2′‐bipyridine (Ru4c), have been synthesized. These compounds were characterized and their photophysical properties examined. The electronic spectra of three complexes show pyridyl π → π* transitions in the UV region and metal‐to‐ligand charge transfer bands in the visible region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A new class of cyclometalated AuIII complexes containing various bidentate C‐deprotonated C^N and cis‐chelating bis(N‐heterocyclic carbene) (bis‐NHC) ligands has been synthesized and characterized. These are the first examples of AuIII complexes supported by cis‐chelating bis‐NHC ligands. [Au(C^N)(bis‐NHC)] complexes display emission in solutions under degassed condition at room temperature with emission maxima (λmax) at 498–633 nm and emission quantum yields of up to 10.1 %. The emissions are assigned to triplet intraligand (IL) π→π* transitions of C^N ligands. The AuIII complex containing a C^N (C‐deprotonated naphthalene‐substituted quinoline) ligand with extended π‐conjugation exhibits prompt fluorescence and phosphorescence of comparable intensity with λmax at 454 and 611 nm respectively. With sulfonate‐functionalized bis‐NHC ligand, four water‐soluble luminescent AuIII complexes, including those displaying both fluorescence and phosphorescence, were prepared. They show similar photophysical properties in water when compared with their counterparts in acetonitrile. The long phosphorescence lifetime of the water‐soluble AuIII complex with C‐deprotonated naphthalene‐substituted quinoline ligand renders it to function as ratiometric sensor for oxygen. Inhibitory activity of one of these water‐soluble AuIII complexes towards deubiquitinase (DUB) UCHL3 has been investigated; this complex also displayed a significant inhibitory activity with IC50 value of 0.15 μM .  相似文献   

8.
The model morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide (1) reacts with phenacyl bromides to afford N4‐(5‐aryl‐1,3‐oxathiol‐2‐yliden)‐2‐phenylquinazolin‐4‐amines (4) or N4‐(4,5‐diphenyl‐1,3‐oxathiol‐2‐yliden)‐2‐phenyl‐4‐aminoquinazoline ( 5 ) by a thermodynamically controlled reversible reaction favoring the enolate intermediate, while the 4‐[4‐aryl‐5‐(2‐phenylquinazolin‐4‐yl)‐1,3‐thiazol‐2‐yl]morpholine ( 8 ) was produced by a kinetically controlled reaction favoring the C‐anion intermediate. 1H nmr, 13C nmr, ir, mass spectroscopy and x‐ray identified compounds ( 4 ), ( 5 ) and ( 8 ).  相似文献   

9.
A new triphenylamine‐containing aromatic diamine monomer, N,N‐bis(4‐aminophenyl)‐N,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di‐tert‐butyl‐substituted N,N,N,N′‐tetraphenyl‐1,4‐phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N‐methyl‐2‐pyrrolidinone (NMP) and N,N‐dimethylacetamide, and could be solution‐cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass‐transition temperatures of 269–296 °C, 10% weight‐loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316–342 nm and photoluminescence maxima around 362–465 nm in the violet‐blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole‐transporting and electrochromic properties were examined by electrochemical and spectro‐electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide‐coated glass substrate exhibited two reversible oxidation redox couples at 0.57–0.60 V and 0.95–0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (ΔT%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330–2343, 2009  相似文献   

10.
Hydrogen bonding of uracil with water in excited n → π* states has been investigated by means of ab initio SCF -CI calculations on uracil and water–uracil complexes. Two low-energy excited states arise from n → π* transitions in uracil. The first is due to excitation of the C4? O group, while the second is associated with excitation of the C2? O group. In the first n → π* state, hydrogen bonds at O4 are broken, so that the open water–uracil dimer at O4 dissociates. The “wobble” dimer, in which a water molecule is essentially free to move between its position in an open structure at N3? H and a cyclic structure at N3? H and O4 in the ground state, collapses to a different “wobble” dimer at N3? H and O2 in the excited state. The third dimer, a “wobble” dimer at N1? H and O2, remains intact, but is destabilized relative to the ground state. Although hydrogen bonds at O2 are broken in the second n → π* state, the three water–uracil dimers remain bound. The “wobble” dimer at N1? H and O2 changes to an excited open dimer at N1? H. The “wobble” dimer at N3? H and O4 remains intact, and the open dimer at O4 is further stabilized upon excitation. Dimer blue shifts of n → π* bands are nearly additive in 2:1 and 3:1 water:uracil structures. The fates of the three 2:1 water:uracil trimers and the 3:1 water:uracil tetramer in the first and second n → π* states are determined by the fates of the corresponding excited dimers in these states.  相似文献   

11.
The title compound, (C10H10N2)[CdBr4], was synthesized via a hydro­thermal reaction. Its structure features discrete 4,4′‐bipyridinium cations and tetra­hedral [CdBr4]2− anions linked into ion pairs by single N—H⋯Br hydrogen bonds. Photoluminescent investigation reveals that the title compound displays a strong emission in the blue region, which may originate from π→π* charge‐transfer inter­actions of the 4,4′‐bipyridinium cations.  相似文献   

12.
A new class of ruthenium(II) polypyridine complexes with a series of D–π–A–π–D type (D=donor, A=acceptor) ligands was synthesized and characterized by 1H NMR spectroscopy, mass spectrometry, and elemental analysis. The photophysical and electrochemical properties of the complexes were also investigated. The newly synthesized ruthenium(II) polypyridine complexes were found to exhibit two intense absorption bands at both high‐energy (λ=333–369 nm) and low‐energy (λ=520–535 nm) regions. They are assigned as intraligand (IL) π→π* transitions of the bipyridine (bpy) and π‐conjugated bpy ligands, and IL charge‐transfer (CT) transitions from the donor to the acceptor moiety with mixing of dπ(RuII)→π*(bpy) and dπ(RuII)→π*(L) MLCT characters, respectively. In addition, all complexes were demonstrated to exhibit intense red emissions at approximately λ=727–744 nm in degassed dichloromethane at 298 K or in n‐butyronitrile glass at 77 K. Nanosecond transient absorption (TA) spectroscopy has also been carried out, establishing the presence of the charge‐separated state. In order to understand the electrochemical properties of the complexes, cyclic voltammetry has also been performed. Two quasi‐reversible oxidation couples and three quasi‐reversible reduction couples were observed. One of the ruthenium(II) complexes has been utilized in the fabrication of memory devices, in which an ON/OFF current ratio of over 104 was obtained.  相似文献   

13.
The syntheses, structures and properties of the complexes [CdBr2( L )2·4H2O]n [ L = 2,6‐dimethyl‐3,5‐dicyano‐4‐(4‐pyridyl)‐1,4‐dihydropyridine], 1 and [Cd(SCN)2( L )2(H2O)]n, 2 , are reported. In polymeric complexes 1 — 2 , the L ligands bridge the metal centers through the pyrimidyl and cyano nitrogen atoms forming 1‐D double‐stranded chain and zigzag chain, respectively. The L ligands in complex 1 act as κ1, κ1‐bidentate bridging ligand, whereas the L ligands in complex 2 act as κ1‐monodentae and κ1, κ1‐bidentate bridging ligand. The molecules of these complexes are interlinked through various weak interactions that form the packed structure. All the complexes exhibit emissions which may be tentatively assigned as intraligand (IL) π→π* transitions.  相似文献   

14.
A series of PtII complexes Pt(fpbpy)Cl ( 1 ), Pt(fpbpy)(OAc) ( 2 ), Pt(fpbpy)(NHCOMe) ( 3 ), Pt(fpbpy)(NHCOEt) ( 4 ), and [Pt(fpbpy)(NCMe)](BF4) ( 5 ) with deprotonated 6‐(5‐trifluoromethyl‐pyrazol‐3‐yl)‐2,2′‐bipyridine terdentate ligand are prepared, among which 1 is converted to complexes 2 – 5 by a simple ligand substitution. Alternatively, acetamide complex 3 is prepared by hydrolysis of acetonitrile complex 5 , while the back conversion from 3 to 1 is regulated by the addition of HCl solution, showing the reaction sequence 1 → 5 → 3 → 1 . Multilayer OLED devices are successfully fabricated by using triphenyl‐(4‐(9‐phenyl‐9H‐fluoren‐9‐yl)phenyl) silane (TPSi‐F) as host material and with doping concentrations of 1 varying from 7 to 100 %. The electroluminescence showed a substantial red‐shifting versus the normal photoluminescence detected in solution. Moreover, at a doping concentration of 28 %, the device showed a saturated red luminescence with a maximum external quantum yield of 8.5 % at 20 mA cm?2 and a peak luminescence of 47 543 cd m?2 at 18.5 V.  相似文献   

15.
The synthesis and characterization of the copper (II) complex [Cu2(OOCCH = C(CH3)Fc)3(phen)2]CIO4 · 2H2O (1) are reported. The structure of the complex was determined by single‐crystal X‐ray analysis. The compound crystallizes in the monoclinic system, space group Pc, with Z =2, a = 1.2799(4) nm, b =0.9969 (4) nm, c = 2.5228 nm, and β = 91.576 (1) °. The cationic part of 1 indicates a penametallic core in which three 3‐ferrocenyl‐2‐crotonic acid salt (FCA) groups act as (O, O') bridging ligands between two copper (II) ions with a square‐pyramidal environment. Cyclic voltammetric experiments in acetonitrile have been performed mainly to examine the Fe(II) → Fe(III) one‐electron oxidation in FCA and its complex. The variable‐temperature magnetic susceptibility measurements revealed very weak intramolecular anti‐ferromagnetic coupling. Fitting parameters are 2J = ‐0.2 cm?1, g = 2.114, and θ = 0K.  相似文献   

16.
The photochemical reaction between 1,2‐naphthoquinone (NQ ) and adenine was investigated using nanosecond time‐resolved laser flash photolysis. With photolysis at 355 nm, the lowest triplet state T1 of NQ was produced via intersystem crossing from its singlet excited state. The triplet‐triplet absorption of the state contributes three bands of transient spectra at 374, 596 and 650 nm, respectively, in pure acetonitrile and binary water‐acetonitrile solutions. In the presence of adenine, the observation of + (at 363 nm) and radical (at 343 and 485 nm) indicates a multistep mechanism of electron transfer process followed by a proton transfer between 3NQ * and adenine. By fitting with the Stern‐Volmer relationship, the quenching rate constant k q of 3NQ * by adenine in binary water‐acetonitrile solutions (4/1, volume ratio, v/v) is determined as 1.66 × 109 m −1 s−1. Additionally, no spectral evidence confirms the existence of electron transfer between 3NQ * with thymine, cytosine and uracil.  相似文献   

17.
A group of 2‐(N,N‐diethylamino)‐4‐aminoquinazoline derivatives have been synthesized in the reaction of N1,N1‐diethyl‐N2‐arylchlorocarboxyamidines with cyanamide in the presence of T1Cl4 as a catalyst. Such quinazolines decompose into the corresponding quinazolones in dilute aqueous HC1 solutions at higher temperature. Hydrolysis rates of 2‐(N,N‐diethylamino)‐4‐aminoquinazoline and 2‐(N,N‐diethylamino)‐4‐(N,N‐dimethylamino)‐quinazoline have been determined to observe the influence of substituents at the 4‐amino group upon the hydrolysis. pKa values have been also determined for these compounds and analyzed in conjunction with the Hammett σ constants.  相似文献   

18.
Bis(2‐methyl‐8‐quinolinolato)aluminum(III) hydroxide complex (AlMq2OH) is used in organic light‐emitting diodes (OLEDs) as an electron transport material and emitting layer. By means of ab initio Hartree–Fock (HF) and density functional theory (DFT) B3LYP methods, the structure of AlMq2OH was optimized. The frontier molecular orbital characteristics and energy levels of AlMq2OH have been analyzed systematically to study the electronic transition mechanism in AlMq2OH. For comparison and calibration, bis(8‐quinolinolato)aluminum(III) hydroxide complex (Alq2OH) has also been examined with these methods using the same basis sets. The lowest singlet excited state (S1) of AlMq2OH has been studied by the singles configuration interaction (CIS) method and time‐dependent DFT (TD‐DFT) using a hybrid functional, B3‐LYP, and the 6‐31G* basis set. The lowest singlet electronic transition (S0 → S1) of AlMq2OH is π → π* electronic transitions and primarily localized on the different quinolate ligands. The emission of AlMq2OH is due to the electron transitions from a phenoxide donor to a pyridyl acceptor from another quinolate ligand including C → C and O → N transference. Two possible electron transfer pathways are presented, one by carbon, oxygen, and nitrogen atoms and the other via metal cation Al3+. The comparison between the CIS‐optimized excited‐state structure with the HF ground‐state structure indicates that the geometric shift is mainly confined to the one quinolate and these changes can be easily understood in terms of the nodal patterns of the highest occupied and lowest unoccupied molecular orbitals. On the basis of the CIS‐optimized structure of the excited state, TD‐B3‐LYP calculations predict an emission wavelength of 499.78 nm. An absorption wavelength at 380.79 nm on the optimized structure of B3LYP/6‐31G* was predicted. They are comparable to AlMq2OH 485 and 390 nm observed experimentally for photoluminescence and UV‐vis absorption spectra of AlMq2OH solid thin film on quartz, respectively. Lending theoretical corroboration to recent experimental observations and supposition, the reasons for the blue‐shift of AlMq2OH were revealed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

19.
Some mixed bis(morpholine‐4‐dithiocarbamato‐S,S′)antimony(III) complexes [(OC4H8NCS2)2SbL] with oxygen or sulfur donor ligands [L = ―OOCCH3 ( 1 ), ―OOCC6H5 ( 2 ), ―SOCCH3 ( 3 ), ―SCH2COOH ( 4 ), ―OOCC6H4(OH) ( 5 ), ―SCH2CH2CH3 ( 6 ), ―OC6H5 ( 7 ), ½ ―SCH2CH2S― ( 8 )] have been synthesized by reacting the chloro‐bis(morpholine‐4‐dithiocarbamato‐S,S′)antimony(III) with corresponding oxygen or sulfur donor ligands in 1:1 or 2:1 stoichiometries. These have been characterized by melting point, molecular weight determination (cryoscopically), antimony (iodometrically) and sulfur (gravimetrically) estimation, elemental analyses (C, H and N), UV–visible, FT‐IR, far IR, multinuclear NMR (1H and 13C)], TG/DTA analysis, ESI–mass and powder X‐ray diffraction studies. The splitting of the strong band observed at 1046–1066 cm?1 due to υ(C―S) indicated anisobidentate mode of binding of the dithiocarbamate group, which was further supported by a 13C NMR signal appearing at around δ 200 due to NCS2 moiety. The base peak observed at m/z 444.9 supports the strong chelating nature of the morpholine‐4‐dithiocarbamate compared to the other hetero ligands used. TGA revealed that, complexes 21 and 4 were decomposed in three steps; also 6 was decomposed in two steps, followed by the formation of Sb2S3. The results obtained by antimicrobial screening tests indicate that complex 3 showed a maximum zone of inhibition (20 mm) against Trichoderma ressie at a concentration of 200 µg ml?1. Complexes 2 , 3 and 8 are most active (zone of inhibition (ZI) 17–20 mm) against both of the fungal species Aspergillus niger and Trichoderma ressie as well as complex 4 (ZI 17 mm) and 6 (ZI 18 mm) against Trichoderma ressie. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Iridium(III) complexes with N‐heterocyclic (NHC) ligands including fac‐Ir(pmb)3 (1), mer‐Ir(pmb)3 (2), (pmb)2Ir(acac) (3), mer‐Ir(pypi)3 (4), and fac‐Ir(pypi)3 (5) [pmb = 1‐phenyl‐3H‐benzimidazolin‐2‐ylidene, acac = acetoylacetonate, pypi = 1‐phenyl‐5H‐benzimidazolin‐2‐ylidene; fac = facial, mer = meridional] were investigated theoretically. The geometry structures of 1–5 in the ground and excited state were optimized with restricted and unrestricted DFT (density functional theory) methods, respectively (LANL2DZ for Ir atom and 6‐31G for other atoms). The HOMOs (highest occupied molecular orbitals) of 1–3 are composed of d(Ir) and π(phenyl), while those of 4 and 5 are contributed by d(Ir) and π(carbene). The LUMOs (lowest unoccupied molecular orbitals) of 1, 2, 4, and 5 are localized on carbene, but that of 3 is localized on acac. The calculated lowest‐lying absorptions with TD‐DFT method based on Perdew‐Burke‐Erzenrhof (PBE) functional of 1 (310 nm), 2 (332 nm), and 3 (347 nm) have MLcarbeneCT/ILphenyl→carbeneCT (MLCT = metal‐to‐ligand charge transfer; ILCT = intraligand charge transfer) transition characters, whereas those of 4 (385 nm) and 5 (389 nm) are assigned to MLcarbeneCT/ILcarbene→carbeneCT transitions. The phosphorescences calculated by TD‐DFT method with PBE0 functional of 1 (386 nm) and 2 (388 nm) originate from 3MLcarbeneCT/3ILphenyl→carbeneCT excited states, but those of 4 (575 nm) and 5 (578 nm) come from 3MLcarbeneCT/3ILcarbene→carbeneCT excited states. The calculated results showed that the carbene and phenyl groups act as two independent chromophores in transition processes. Compared with 1 and 2, the absorptions of 4 and 5 are red‐shifted by increasing the effective π‐conjugation groups near the Ccarbene atom. We predicated that (pmb)2Ir(acac) is nonemissive, because the LUMO of 3 is contributed by the nonemissive acac ligand. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号