首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, methyl 2‐(quinolin‐8‐yloxy) acetate ( 2 ) obtained by reaction of 8‐hydroxyquinoline ( 1 ) with methyl chloroacetate was condensed with hydrazine hydrate to afford the carbohydrazide ( 3 ). Thio/semicarbazide derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) were obtained by treatment of the 3 with substituted phenyl iso/thioisocyanates. The 4a , 4b , 4c , 4d , 4e , 4f , 4g on acidic and basic intramolecular cyclization led to N‐(aryl)‐5‐((quinolin‐8‐yloxy)methyl)‐1,3,4‐oxa/thiadiazol‐2‐amines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g ) and 4‐aryl‐5‐((quinolin‐8‐yloxy)methyl)‐2H‐1,2,4‐triazole‐3(4H)‐thiones ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ), respectively. All the synthesized compounds were characterized by spectroscopic techniques and elemental analyses. The thiosemicarbazide ( 4c ) was also confirmed by X‐ray crystallography.  相似文献   

2.
The 4‐quinolone‐2‐carbohydrazide 6a was converted into 1‐aryl‐3‐(4‐quinolon‐2‐yl)ureas 5a , 5b , 5c , 5d , 5e , 1‐aryl‐3‐(4‐quinolon‐2‐yl)imidazolidine‐2,4‐diones 9a , 9b , and N‐(4‐quinolon‐2‐yl)carbamates 10a , 10b via 4‐quinolone‐2‐carbonylazide 7a . The 4‐methoxyquinoline‐2‐carbohydrazide 6b was also transformed into 1‐aryl‐3‐(4‐methoxyquinolin‐2‐yl)ureas 11a , 11b , 11c , 11d , 1‐aryl‐3‐(4‐methoxyquinolin‐2‐yl)imidazolidine‐2,4‐diones 12a , 12b , and N‐(4‐methoxyquinolin‐2‐yl)carbamates 13a , 13b via 4‐methoxyquinoline‐2‐carbonylazide 7b . Some of the 1‐aryl‐3‐(4‐quinolon‐2‐yl)ureas 5a , 5b , 5c , 5d , 5e showed the in vitro antimalarial activity to chloroquine‐resistant Plasmodium falciparum, wherein IC50 was 0.93 to 4.00 μM.  相似文献   

3.
A new series of synthesis and biological screening of 2‐(2‐aryl‐4‐methyl‐thiazol‐5‐yl)‐5‐((2‐aryl/benzylthiazol‐4‐yl)methyl)‐1,3,4‐oxadiazole derivatives 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i was achieved by condensation of 2‐(2‐aryl/benzylthiazol‐4‐yl)acetohydrazide 2a , 2b , 2c with 4‐methyl‐2‐arylthiazole‐5‐carbaldehyde 3a , 3b , 3c followed by oxidative cyclization of N'‐((4‐methyl‐2‐arylthiazol‐5‐yl)methylene)‐2‐(2‐aryl/benzylthiazol‐4‐yl)acetohydrazide 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i using iodobenzene diacetate as oxidizing agent. All the synthesized compounds were screened for their in vitro antifungal activity against Candida albicans, Candida tropicalis, Aspergillus niger, and Aspergillus flavus. Some of the synthesized compounds showed good antifungal activity.  相似文献   

4.
In continuation of our work, we synthesized 2‐(sulfamoylphenyl)‐4′‐amino‐4‐(4″‐hydroxyphenyl)‐thiazole ( 3a ), which were reacted with various (aryl/hetroaryl) aldehyde to form 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(4″‐hydroxyphenyl)‐thiazoles ( 4a , 4b , 4c , 4d , 4e , 4f ). Glucosylation of compounds ( 4a , 4b , 4c , 4d , 4e , 4f ) have been done by using acetobromoglucose as a glucosyl donor to afford 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(2,3,4,6‐tetra‐O‐acetyl‐4″‐O‐β‐D ‐glucosidoxyphenyl)‐thiazoles ( 5a , 5b , 5c , 5d , 5e , 5f ), further on deacetylation to produce 2‐(sulfamoylphenyl)‐4′‐(iminoaryl/hetroaryl)‐4‐(4″‐O‐β‐D ‐glucosidoxyphenyl)‐thiazoles ( 6a , 6b , 6c , 6d , 6e , 6f ). The compounds are confirmed by FTIR, 1H‐NMR, 13C‐NMR, and ES‐Mass spectral analysis. J. Heterocyclic Chem., (2011).  相似文献   

5.
Anhydrous zinc bromide catalysed reactions of arylidine‐3‐acetyl coumarins ( 1a‐c ) and 5,6‐benzoanalogs of arylidine 3‐acetyl coumarins ( 4a,4b ) with 1,3‐cyclohexanedione gives ‐(4‐aryl‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromen‐2yl)‐2H‐chromen‐2‐ones ( 3a, 3c ) and 5,6‐benzoanalogs of 3‐(4‐aryl‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromen‐2yl)‐2H‐chromen‐2‐one ( 5a,5b ). Under similar conditions arylidine‐3‐acetylcoumarins ( 1a, 1b,1d, 1e, 1f ) and 5,6‐benzoanalog of arylidine 3‐acetyl coumarin ( 4b ) react with 5,5‐dimethyl‐1,3‐cyclohexanedione (dimedone) yielding 3‐(4‐aryl‐7,7‐dimethyl‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromen‐2‐yl)‐2H‐chromen‐2‐ones ( 3d‐3h ) and the 5,6‐benzoanalog of 3.(4‐aryl‐7,7‐dimethyl‐5‐oxo‐5,6,7,8‐tetrahydro‐4H‐chromen‐2‐yl)‐2H‐chromen‐2‐one ( 5c ).  相似文献   

6.
Herein, we present an innovative, novel, and highly convenient protocol for the synthesis of 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ), which have been delineated from the reaction of 4‐sec‐amino‐2‐oxo‐6‐aryl‐2H‐pyran‐3‐carbonitrile ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) and 4‐sec‐amino‐2‐oxo‐5,6‐dihydro‐2H‐benzo[h]chromene‐3‐carbonitriles ( 9a , 9b , 9c , 9d , 9e ) with 2‐acetylpyridine ( 5 ) through the ring transformation reaction by using KOH/DMF system at RT. The salient feature of this procedure is to provide a transition metal‐free route for the synthesis of asymmetrical 1,3‐teraryls like 3‐(pyridin‐2‐yl)‐5‐sec‐aminobiphenyl‐4‐carbonitriles ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ) and 9,10‐dihydro‐3‐(pyridine‐2‐yl)‐1‐sec‐aminophenanthrene‐2‐carbonitriles ( 10a , 10b , 10c , 10d , 10e ). The novelty of the reaction lies in the creation of an aromatic ring from 2H‐pyran‐2‐ones and 2H‐benzo[h]chromene‐3‐carbonitriles via two‐carbon insertion from 2‐acetylpyridine ( 5 ) used as a source of carbanion.  相似文献   

7.
Some new target products 5‐aryl‐4,5‐dihydro‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐1‐(4‐phenylthiazol‐2‐yl)pyrazoles 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j have been synthesized by reaction of 2‐bromo‐1‐phenylethanone and compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j which were prepared from the combination of thiosemicarbazide and (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j . All the structures were established by MS, IR, CHN, and 1H NMR spectra data. Synthesis of structure diversity is applied. J. Heterocyclic Chem., (2011).  相似文献   

8.
2‐Aryl‐hydrazononitriles 3a , 3b , 3c were prepared by coupling 3‐ethylthio‐5‐cyanomethyl‐4‐phenyl‐1,2,4‐triazole ( 1 ) with diazonium salts 2a , 2b , 2c . Reacting 3a , 3b , 3c with both ethyl bromoacetate ( 4a ) and 4‐bromobenzyl bromide ( 4b ) in DMF, in the presence of K2CO3, at 80 °C for 3–4 h, gave the corresponding 4‐amino‐pyrazoles 6a , 6b , 6c , 6d , 6e , 6f . Diazotization of 6a , 6b , 6c , 6d , 6e , 6f , followed by reaction with NaN3, leads to the formation of 4‐azidopyrazoles 8a , 8b , 8c , 8d , 8e , 8f , a new heterocyclic ring system. Interestingly, fusion of 4‐azidopyrazoles 8d , 8e , 8f at temperature higher than their melting points with 5 °C for 2 min did not give the expected fused pyrazolo[4,3‐c]isoxazoles 9 but furnished instead the novel pyrazolo[4,3‐b]quinolinones 10a , 10b , 10c , in high yields.  相似文献   

9.
The reactions of α‐ferrocenylmethylidene‐β‐oxocarboxylates ( 1 , 2 , 3a , and 3b ) with N‐methyl‐ and N‐(2‐hydroxyethyl)hydrazines ( 5a , 5b ) afford ethyl 1‐alkyl‐5‐aryl(methyl)‐3‐ferrocenylpyrazole‐4‐carboxylates ( 6a , 6b , 6c , 6d , 6e ) (~50%) and N‐alkylhydrazine insertion products, viz., ethyl (N′‐acyl‐N′‐alkylhydrazino)‐3‐ferrocenylpropanoates ( 7a , 7b , 7c , 7d , 7e ) (~20%) and 1‐acyl‐2‐(N′‐alkyl‐N′‐ethoxycarbonylhydrazino)‐2‐ferrocenylethanes ( 8a , 8b , 8c , 8d , 8e ) (~10%). The structures of the compounds obtained were established based on the spectroscopic data and X‐ray diffraction analysis (for pyrazoles 6a and 6b ). J. Heterocyclic Chem., (2011).  相似文献   

10.
The reaction of N‐aryl benzamidines 1a , 1b , 1c , 1d , 1e , 1f , 1g , 1h , 1i , 1j , 1k , 1l , 1m , 1n with diphenyl carbonate 2a or ethyl phenyl carbonate 2b synthesized 2‐arylquinazolin‐4(3H)‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l , 3m , 3n in simple and safe process with good yields (71–90%). It was suggested that different electron‐donating substituent in N‐aryl benzamidines 1a , 1b , 1c , 1d , 1e , 1f , 1g , 1h , 1i , 1j , 1k , 1l , 1m , 1n afforded similar effect to the yields of 2‐arylquinazolin‐4(3H)‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l , 3m , 3n . In these reactions, N‐aryl benzamidines 1a , 1b , 1c , 1d , 1e , 1f , 1g , 1h , 1i , 1j , 1k , 1l , 1m , 1n built up intermediate compounds by nucleophilic addition to carbonates 2 to give annulation products 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l , 3m , 3n , following to cyclization involving the elimination of ethanol/phenol.  相似文献   

11.
A number of novel sulfonamide derivatives of 5‐substituted‐3‐methylisoxazole were synthesized and characterized, starting from 3,5‐dimethylisoxazole. Key steps include the generation of 3,5‐dimethylisoxazole‐4‐sulfonamides followed by their reactions with N‐(dimethoxymethyl)‐N,N‐dimethylamine or various aromatic and heteroaromatic aldehydes. As a result, a series of novel aryl/heteroaryl‐ and aminovinylsubstituted derivatives of the isoxazole heterocycle were obtained. The scope and limitations of the developed approach are discussed.  相似文献   

12.
A novel one‐pot diastereoselective synthesis of trans‐6‐aryl‐5‐hydroxy‐2,3‐dihydro[2,3‐c]pyrazol‐4(1H)‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h is described via the Darzens condensation reaction of 2‐chloro‐1‐(5‐hydroxy‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)ethanone ( 2 ) with different aromatic aldehydes in aqueous basic medium. The structures of the compounds prepared were determined by analytical and spectral analyses.  相似文献   

13.
Treatment of 3‐aryl‐2‐thioxo‐1,3‐thiazolidin‐4‐ones 1 with CN? and NCO? effected the ring cleavage providing [(cyanocarbonothioyl)amino]benzenes 4 and arylisothiocyanates 5 , respectively. Similar treatment of 5‐(2‐aryl‐2‐oxoethyl) derivatives 2 afforded 2,4‐bis(2‐aryl‐2‐oxoethylidene)cyclobutane‐1,3‐diones 6 along with each of the preceding products. Treatment of the respective (E,Z)‐5‐(2‐aryl‐2‐oxoethylidene) analogues 3b and 3c with CN? gave 4b and 4c and 2‐(arylcarbonyl)‐2‐methoxy‐4‐oxopentanedinitriles 7b and 7c , in addition to 3,6‐bis[2‐(4‐chlorophenyl)‐1‐methoxy‐2‐oxoethylidene]‐1,4‐dithiane‐2,5‐dione 8c , which has been generated from 3c . Reactions of 3c or 3d with NCO? provided 5c or 5d , together with 8c or 8d as pure isomers. In the formation of the MeO products 7 and 8 , the solvent (MeOH) has participated. Structures of these products are based on microanalytical and spectroscopic data. Rationalizations for the above transformations are given.  相似文献   

14.
4‐Aminopyrazole‐3‐ones 4b, e, f were prepared from pyrazole‐3‐ones 1b‐d in a four‐step reaction sequence. Reaction of the latter with methyl p‐toluenesulfonate gave 1‐methylpyrazol‐3‐ones 2b‐d . Compounds 2b‐d were treated with aqueous nitric acid to give 4‐nitropyrazol‐3‐ones 3b‐d. Reduction of compounds 3b‐d by catalytic hydrogenation with Pd‐C afforded the 4‐amino compounds 4b, e, f. Using similar reaction conditions, nitropyrazole‐3‐ones derivatives 2c, d were reduced into aminopyrazole‐3‐ones 5e, f. 4‐Iodopyrazole‐3‐ones 7a, 7c and 8 were prepared from the corresponding pyrazol‐3‐ones 2a, 2c and 6 and iodine monochloride or sodium azide and iodine monochloride.  相似文献   

15.
3‐(2‐Aryl‐2,3‐dihydro‐benzo[b][1,4]thiazepin‐4‐yl)chromen‐2‐ones ( 2a, e, f ) and (Z)‐3‐(2,3‐dihydro‐2‐arylbenzo[b][1,4]thiazepin‐4(5H)‐ylidene)chroman‐2‐ones ( 3a‐f ) have been synthesized by the reaction of 3‐aryl‐1‐(3‐coumarinyl)propen‐1‐ones ( 1a‐f ) with 2‐aminothiophenol in a hot mixture of toluene and acetic acid. Structures of all new compounds and their complete 1H and 13C assignments were achieved applying different one‐ and two‐dimensional nmr experiments in combination with various spectroscopic techniques.  相似文献   

16.
Synthesis of a series of new 4‐substituted‐3‐aryl‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazoles ( 2a , 2b , 2c , 2d , 2e , 2f , 2g , 3a , 3b , 3c , 3d , 3e , 3f , 3g , and 4a , 4b , 4c , 4d , 4e , 4f , 4g ) is described. All the synthesized compounds were evaluated in vitro for their antibacterial activity against two gram‐positive and two gram‐negative bacteria, namely, Bacillus subtilis (MTCC 8509), Bacillus stearothermophilus (MTCC 8508), Escherichia coli (MTCC 51), and Pseudomonas putida (MTCC 121), and their activity was compared with two commercial antibiotics, streptomycin and chloramphenicol. Two compounds, namely, 3‐(4‐anisyl)‐1‐(2,6‐dimethylpyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2b ) and 3‐(2‐thienyl)‐1‐(2,6‐dimethyl pyrimidin‐4‐yl)pyrazole‐4‐carboxaldehyde ( 2g ) were found to be equipotent to streptomycin and chloramphenicol against gram‐negative bacteria, E. coli having minimum inhibitory concentration (MIC) value = 4 μg/mL. Compounds 4b and 4d also displayed good activity against E. coli with MIC = 8 μg/mL. J. Heterocyclic Chem., (2011).  相似文献   

17.
A new series of 2,4‐diaryl‐6‐methyl‐5‐nitropyrimidines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i ) were synthesized in good yields by Suzuki–Miyaura coupling of 2,4‐dichloro‐6‐methyl‐5‐nitropyrimidine ( 3 ) with various aryl boronic esters ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i ) in the presence of 1,1′‐ bis(diphenylphosphino)ferrocene dichloropalladium(II) (Pd(dppf)2Cl2). Further, antibacterial and antioxidant properties were screened for the title compounds 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i . Most of the compounds possessed significant activity against Gram‐positive bacteria Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria Escherichia coli and Klebsiella pneumoniae. The antioxidant activity of the title compounds showed significant antioxidant activity when compared with vitamin C.  相似文献   

18.
Novel 2‐Alkylamino‐6‐aryl‐8,9‐dihydropyrimido[4,5‐b][1,4]diazepin‐4(7H)‐ones 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k , 5l , 5m , 5n , 5o were prepared regioselectively by the reaction of 2‐alkylamino‐5,6‐diaminopyrimidin‐4(3H)‐ones 3a , 3b , 3c and dimethylamino propiophenones (Mannich bases) 4a , 4b , 4c , 4d , 4e , 4f . The combination of conventional heating and microwave irradiation approaches provided the possibility of working with both stable and sensitive diaminopyrimidines by controlling parameters such as reaction rates, temperature, and power of irradiation. All products were fully characterized by detailed NMR measurements.  相似文献   

19.
Novel 11‐amino‐6‐aryl‐6,7‐dihydroindeno[1,2‐e] pyrimido[4,5‐b][1,4]diazepin‐5(5aH)‐ones 4a‐f were prepared regioselectively by the tricomponent reaction of 4,5,6‐triaminopyrimidine 1, 1,3‐indandione 2 and aromatic aldehydes 3a‐f. The bicomponent approach, using 2,4,5,6‐tetraaminopyrimidine 5 and 2‐aryl‐ideneindandiones 6a‐f as reagents, afforded 9,11‐diamino‐6‐aryl‐6,7‐dihydroindeno[1,2‐e]pyrimido[4,5‐b]‐[1,4]diazepin‐5(5aH)‐ones 7a‐f in good yields and the regioisomeric 8,10‐diamino derivatives 8a‐c in lower yields. Both, bi‐ and tricomponent approaches were performed by microwave irradiation and all products were fully characterized by detailed NMR measurements.  相似文献   

20.
A clean and facile green chemistry method for the synthesis of a series of 2‐amino‐4‐aryl‐6‐ferrocenylpyridine derivatives was afforded. The products were synthesized via the one‐pot reaction of aromatic aldehyde, malononitrile or ethyl cyanoacetate, acetylferrocene and ammonium acetate in aqueous medium under microwave irradiation and conventional heating conditions without catalyst. This method had several advantages such as higher yield, lower cost, reduced environmental impact, and convenient procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号