首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The H2O‐soluble cyclic β3‐tripeptide cyclo(β‐Asp‐β3‐hVal‐β3‐hLys) ( 4 ) was obtained by on‐resin cyclization of the side‐chain‐anchored β‐peptide 3 (Scheme). In aqueous solution, 4 adopts a structure with uniformly oriented amide bonds and all side chains in lateral positions (Fig. 3).  相似文献   

2.
Shusu Shen  Yu Liu 《中国化学》2014,32(11):1107-1110
By the treatment of N‐3‐bromo‐3‐alkenylthioamides with sodium hydroxide in DMF‐H2O in the presence of tetra‐butylammonium bromide, series of 6‐alkylidene‐5,6‐dihydro‐4H‐1,3‐thiazine derivatives were prepared in moderate to good yields. The cyclization is supposed to proceed via both the intramolecular vinylic nucleophilic substitution and the elimination‐addition mechanisms (formation of acetylenic intermediates) in a competitive manner.  相似文献   

3.
Oxidative cyclization of 5‐ethyl‐3‐(4‐methoxy­benzyl­idene)­hydrazino‐1,2,4‐triazino­[5,6‐b]­indole gave the linearly annel­ated title compound, C19H16N6O. The skeleton is approx­imately planar, except for the ethyl group.  相似文献   

4.
A new rapid synthesis of γ‐lactones, cis fused with a cyclopentenic ring by thermal cyclization of 7‐chloro‐2‐(methoxycarbonyl)‐4‐6‐dimethylocta‐7‐phenyl (or methyl) (2E,4E,6E)‐trienoic acids was reported. The key step implicates an intramolecular cyclization to a cyclopentenyl cation, according to an electrocyclic π2s + π2a conrotatory process, published in a recent paper (from the corresponding diacids). We have investigated the thermal behavior of the corresponding half‐esters since; if the cyclization obeys to the proposed mechanism, the diacids, half‐esters must also cyclize in a similar manner. Saponification of these led to γ‐dilactones via intermediary cyclopropanes. Mechanistic pathways were investigated.  相似文献   

5.
A Ph3P‐catalyzed cyclization of α‐halogeno ketones 2 with dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) 3 produced halogenated α,β‐unsaturated γ‐butyrolactone derivatives 4 in good yields (Scheme 1, Table). The presence of electron‐withdrawing groups such as halogen atoms at the α‐position of the ketones was necessary in this reaction. Cyclization of α‐chloro ketones resulted in higher yields than that of the corresponding α‐bromo ketones. Dihalogeno ketones similarly afforded the expected γ‐butyrolactone derivatives in high yields.  相似文献   

6.
A new, easy and rapid synthesis of γ‐dilactones is cis‐fused with a cyclopentenic ring via cyclization of 7‐chlorotriethylenic‐malonic acids. The key step implicates an intramolecular cyclization to a cyclopentenyl cation, according to an electrocyclic π2s + π2a conrotatory process. This cyclopentenyl cation led to unstable γ‐lactones intermediates that are rearrange to more stable isomers. δ‐lactones (6Z and 6E‐(3‐chlorobut‐2‐en‐2‐yl)‐5‐methyl‐3,6‐dihydro‐2H‐pyran‐2‐one) were obtained as secondary products. Mechanistic pathways were considered. The structures of the newly synthesized compounds were established by elemental and spectral data.  相似文献   

7.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

8.
A straightforward access to a hitherto unknown C 3‐symmetric tricyclic triol both in racemic and enantiopure forms has been developed. Treatment of 7‐tert ‐butoxynorbornadiene with peroxycarboxylic acids provided mixtures of C 1‐ and C 3‐symmetric 3,5,7‐triacyloxynortricyclenes via transannular π‐cyclization and replacement of the tert ‐butoxy group. By refluxing in formic acid, the C 1‐symmetric esters were converted to the C 3‐symmetric formate. Hydrolysis gave diastereoisomeric triols, which were separated by recrystallization. Enantiomer resolution via diastereoisomeric tri(O ‐methylmandelates) delivered the target triols on a gram scale. The pure enantiomers are useful as core units of dopants for liquid crystals.  相似文献   

9.
A series of 2‐amino‐7‐methoxy‐4‐aryl‐4H‐chromene‐3‐carbonitrile compounds 2 were obtained by condensation of 3‐methoxyphenol with β‐dicyanostyrenes 1 in absolute ethanol containing piperidine. The intermediate enamines 3 were prepared by compounds 2 with 5‐substituted‐1,3‐cyclohexanedione using p‐toluenesuflonic acid (TsOH) as catalyst. The title compounds 11‐amino‐3‐methoxy‐8‐substituted‐12‐aryl‐8,9‐dihydro‐7H‐chromeno[2,3‐b]quinolin‐10(12H)‐one 4 were synthesized by cyclization of the intermediate enamines 3 in THF with K2CO3 /Cu2Cl2 as catalyst. The structures of all compounds were characterized by elemental analysis, IR, MS, and 1H NMR spectra. The crystal structure of compound 4i was determined by single‐crystal X‐ray diffraction analysis.  相似文献   

10.
Two efficient methods for the preparation of 2‐(2‐sulfanyl‐4H‐3,1‐benzothiazin‐4‐yl)acetic acid derivatives 3 under mild conditions have been developed. The first method is based on the reaction of 3‐(2‐isothiocyanatophenyl)prop‐2‐enoates 1a – 1c with thiols in the presence of Et3N in THF at room temperature, leading to the corresponding dithiocarbamate intermediates 2 , which underwent spontaneous cyclization at the same temperature by an attack of the S‐atom at the prop‐2‐enoyl moiety in a 1,4‐addition manner (Michael addition) to give 2‐(2‐sulfanyl‐4H‐3,1‐benzothiazin‐4‐yl)acetates in one pot. The second method involves treatment of 3‐(2‐isothiocyanatophenyl)prop‐2‐enoic acid derivatives 1b – 1d with Na2S leading to the formation of 2‐(2‐sodiosulfanyl‐4H‐3,1‐benzothiazin‐4‐yl)acetic acid intermediates 5 by a similar addition/cyclization sequence, which are then allowed to react with alkyl or aryl halides to afford derivatives 3 . 2‐(2‐Thioxo‐4H‐3,1‐benzothiazin‐4‐yl)acetic acid derivatives 6 can be obtained by omitting the addition of halides.  相似文献   

11.
An efficient method for the synthesis of 2‐aryl‐2,3‐dihydro‐3‐sulfanyl‐1H‐isoindol‐1‐ones 1 via Pummerer‐type cyclization of N‐aryl‐2‐(sulfinylmethyl)benzamides 2 is described. Thus, treatment of these sulfinyl‐benzamides 2 , easily prepared from 2‐(bromomethyl)benzoates 3 in three steps, with Ac2O at ca. 100° resulted in the formation of the desired isoindolones 1 in generally good yields.  相似文献   

12.
A new and convenient method for the preparation of 2‐aryl‐2,3‐dihydro‐1,8‐naphthyridin‐4(1H)‐ones 4 has been developed. Thus, N‐{3‐[(2E)‐3‐arylprop‐2‐enoyl]pyridin‐2‐yl}‐2,2‐dimethylpropanamides 3 are synthesized from commercially available pyridin‐2‐amine using an easily performed three‐step sequence and are subjected to cyclization with deprotection under acidic conditions in H2O to give the desired products. Similarly, 2‐aryl‐2,3‐dihydro‐1,7‐naphthyridin‐4(1H)‐ones 8 and 2‐aryl‐2,3‐dihydro‐1,6‐naphthyridin‐4(1H)‐ones 12 can be prepared from pyridin‐3‐amine and pyridin‐4‐amine, respectively.  相似文献   

13.
A method for the synthesis of bicyclo[4.1.0]heptenes from 1,6‐enynes through Pd‐catalyzed cycloisomerization has been developed. N‐ and O‐tethered 1,6‐enynes were successfully transformed to their corresponding 3‐aza‐ and 3‐oxabicyclo[4.1.0]heptenes in reasonable‐to‐high yields using the catalysts [PdCl2(CH3CN)2]/P(OPh)3 or [Pd(maleimidate)2(PPh3)2] in toluene. The computational calculations using density functional theory indicate that [PdCl2{P(OPh)3}] in the oxidation state PdII acts as the active catalyst species for the formation of 3‐azabicyclo[4.1.0]heptenes through 6‐endo‐dig cyclization.  相似文献   

14.
The cyclization of N 6‐(ω‐hydroxyalkyl)adenines with a N6H‐group leads to N6,N1 ring closure regardless of the method of the cyclization that was used. Five‐membered to eight‐membered rings were obtained using NBS/PPh3; however, under Mitsunobu conditions, the eight‐membered fused purine was not formed. Surprisingly, the cyclization of N 6‐methyl‐N 6‐(4‐hydroxybutyl)adenine only leads to N6,N7 ring closure using both methods.  相似文献   

15.
Complementary strategies to 2,5‐disubstituted pyrazolo[4,3‐c ]cinnolin‐3‐ones are reported herein, providing late stage substituent introduction at either the 2‐ or the 5‐position. Treating a readily prepared 4‐thiocinnoline ester with substituted hydrazines afforded late stage access to the 2‐position, while late stage substituent introduction at the 5‐position was achieved via two different strategies: alkylation of 4‐hydrazonopyrazol‐3‐ones, followed by a ring‐closing intramolecular SNAr tactic and direct reaction of 5‐(2‐fluorophenyl)‐2,4‐dihydro‐3H‐pyrazol‐3‐ones with aryl diazonium salts, followed by cyclization. The strategies described herein provide practical and general methods to prepare 2,5‐disubstituted pyrazolo[4,3‐c ]cinnolin‐3‐ones.  相似文献   

16.
A concise synthesis of α‐benzylidene‐γ‐methyl‐γ‐butyrolactones 5a – g from substituted benzaldehydes is described. Compounds 1a – g on reaction with phosphorane 2 , provide the pentenoates 3a – g , which can be hydrolyzed to the acids 4a – g . The latter are cyclized to the corresponding butyrolactones 5a – g in excellent yields. The pentenoates 3a – g , on acid catalyzed cyclization, also provide 5a – g in very high yields.  相似文献   

17.
3(2H)‐Furanones are efficiently generated from 3‐alkynyl oxireno[2,3‐b]chromenones by an Au/DDQ‐catalyzed domino reaction through a pathway composed of cyclization, C? C cleavage, nucleophilic addition, oxidation, and nucleophilic addition. It was found that stoichiometric AuCl3 or catalytic Au with stoichiometric DDQ can oxidize the benzylic sp3 C? H bond to facilitate nucleophilic addition.  相似文献   

18.
19.
Oxidative cyclization of the sugar hydrazones ( 3a‐f ) derived from {7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐ylsulfanyl}acetic acid hydrazide ( 1 ) and aldopentoses 2a‐c or aldohexoses 2d‐f with bromine in acetic acid in the presence of anhydrous sodium acetate, followed by acetylation with acetic anhydride gave the corresponding 2‐(per‐O‐acetyl‐alditol‐l‐yl)‐5‐methylthio{7H‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 5a‐f ). Condensative cyclization of the sugar hydrazones ( 3a‐f ) by heating with acetic anhydride gave the corresponding 3‐acetyl‐2‐(per‐O‐acetyl‐alditol‐1‐yl)‐2,3‐dihydro‐5‐methylthio{7‐acetyl‐1,2,4‐triazolo[1,5‐d]tetrazol‐6‐yl}‐1,3,4‐oxadiazoles ( 11a‐f ). De‐O‐acetylation of the acyclo C‐nucleoside peracetates ( 5 and 11 ) with methanolic ammonia afforded the hydrazono lactones ( 7 ) and the acyclo C‐nucleosides ( 12 ), respectively. The structures of new oxadiazole derivatives were confirmed by analytical and spectral data.  相似文献   

20.
A new series of 2‐(p‐tolyloxy)‐3‐(5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl)quinoline were synthesized from oxidative cyclization of N′‐((2‐(p‐tolyloxy)quinoline‐3‐yl)methylene)isonicotinohydrazide in DMSO/I2 at reflux condition for 3–4 h. The structures of the new compounds were confirmed by elemental analyses as well as IR, 1H‐NMR, and mass spectral data. All the synthesized compounds were screened for their antibacterial activities against various bacterial strains. Several of these compounds showed potential antibacterial activity. J. Heterocyclic Chem., (2011).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号