首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 5‐(1‐pyrrolyl)‐4‐methyl‐2‐phenylthieno[2, 3‐d]pyrimidine carbohydrazide 5 with CS2 in the presence of pyridine afforded the 6‐(2, 3‐dihydro‐2‐mercapto‐1, 3, 4‐oxadiazol‐5‐yl)‐4‐methyl‐5‐(1‐pyrrolyl)‐2‐phenylthieno[2, 3‐d]pyrimidine 6 , which reacted with methyl iodide in the presence of sodium methoxide to yield the 6‐(2‐methylthio‐1, 3, 4‐oxadiazol‐5‐yl)‐4‐methyl‐5‐(1‐pyrrolyl)‐2‐phenyl‐thieno[2, 3‐d]pyrimidine 7. The 6‐(2‐substituted‐1, 3, 4‐oxadiazol‐5‐yl)‐2‐phenylthieno[2, 3‐d]pyrimidine derivatives 9, 11 and 13 were obtained by the condensation of 6‐(2‐methylthio‐1, 3, 4‐oxadiazol‐5‐yl)‐2‐phenylthieno[2, 3‐d]pyrimidine 7 with appropriate secondary amines. The structure of the new compounds was substantiated from their IR, UV‐vis spectroscopy, 1H NMR, mass spectra, elemental analysis and X‐ray crystal analysis.  相似文献   

2.
2, 4‐Dimethylpenta‐1, 3‐diene and 2, 4‐Dimethylpentadienyl Complexes of Rhodium and Iridium The complexes [(η4‐C7H12)RhCl]2 ( 1 ) (C7H12 = 2, 4‐dimethylpenta‐1, 3‐diene) and [(η4‐C7H12)2IrCl] ( 2 ) were obtained by interaction of C7H12 with [(η2‐C2H4)2RhCl]2 and [(η2‐cyclooctene)2IrCl]2, respectively. The reaction of 1 or 2 with CpTl (Cp = η5‐C5H5) yields the compounds [CpM(η4‐C7H12)] ( 3a : M = Rh; 3b : M = Ir). The hydride abstraction at the pentadiene ligand of 3a , b with Ph3CBF4 proceeds differently depending on the solvent. In acetone or THF the “half‐open” metallocenium complexes [CpM(η5‐C7H11)]BF4 ( 4a : M = Rh; 4b : M = Ir) are obtained exclusively. In dichloromethane mixtures are produced which additionally contain the species [(η5‐C7H11)M(η5‐C5H4CPh3)]BF4 ( 5a : M = Rh; 5b : M = Ir) formed by electrophilic substitution at the Cp ring, as well as the η3‐2, 4‐dimethylpentenyl compound [(η3‐C7H13)Rh{η5‐C5H3(CPh3)2}]BF4 ( 6 ). By interaction of 2, 4‐dimethylpentadienyl potassium with 1 or 2 the complexes [(η4‐C7H12)M(η5‐C7H11)] ( 7a : M = Rh; 7b : M = Ir) are generated which show dynamic behaviour in solution; however, attempts to synthesize the “open” metallocenium cations [(η5‐C7H11)2M]+ by hydride abstraction from 7a , b failed. The new compounds were characterized by elemental analysis and spectroscopically, 4b and 5a also by X‐ray structure analysis.  相似文献   

3.
In the title compounds, 4‐carboxyanilinium (2R,3R)‐tartrate, C7H8NO2+·C4H5O6, (I), and 4‐aminobenzoic acid, C7H7NO2, (II), the carboxyl planes of the 4‐carboxyanilinium cations/4‐aminobenzoic acid are twisted from the aromatic plane. In (I), the characteristic head‐to‐tail interactions are observed through the tartrate anions, forming two C22(7) chain motifs propagating parallel to the a and c axes of the unit cell. Also, the tartrate anions are connected through two primary C11(6) and C11(7) chain motifs, leading to a secondary R44(22) ring motif. In (II), head‐to‐tail interaction is seen through a discrete D11(2) motif and carboxyl group dimerization is observed through centrosymmetrically related R22(8) motifs around the inversion centres of the unit cell. The crystal structures of both compounds are stabilized by intricate three‐dimensional hydrogen‐bonding networks. Alternate hydrophobic and hydrophilic layers are observed in (I) as a result of a column‐like arrangement of the anions and the aromatic rings of the cations.  相似文献   

4.
The four compounds Ln3Pt7Sb4 (Ln = Ce, Pr, Nd, and Sm) were prepared from the elements by arc‐melting and subsequent heat treatment in resistance and high‐frequency furnaces. The crystal structure of these isotypic compounds was determined from four‐circle X‐ray diffractometer data of Nd3Pt7Sb4 [C2/m, a = 1644.0(2) pm, b = 429.3(1) pm, c = 1030.6(1) pm, β = 128.58(1)°, Z = 2, R = 0.032 for 698 structure factors and 46 variable parameters] and Sm3Pt7Sb4 [a = 1639.5(2) pm, b = 427.1(1) pm, c = 1031.8(1) pm, β = 128.76(1)°, Z = 2, R = 0.025 for 816 F‐values and 46 variables]. The structure is isotypic with that of the homologous phosphide Er3Pd7P4. In contrast to the structure of this phosphide, where the phosphorus atoms have the coordination number nine, the larger antimony atoms of Nd3Pt7Sb4 obtain the coordination number ten. The structural relationships between the structures of EuNi2—xSb2, EuPd2Sb2, CeNi2+xSb2—x, Ce3Pd6Sb5, and Nd3Pt7Sb4, all closely related to the tetragonal BaAl4 (ThCr2Si2) type structure, are briefly discussed emphasizing their space group relationships.  相似文献   

5.
The reaction behaviour of 1, 3, 5‐triaza‐2σ3λ3‐phosphorin‐4, 6‐dionyloxy‐substituted calix[4]arenes towards mono‐ and binuclear rhodium and platinum complexes was investigated. Special attention was directed to structure and dynamic behaviour of the products in solution and in the solid state. Depending on the molar ratio of the reactands, the reaction of the tetrakis(triazaphosphorindionyloxy)‐substituted calix[4]arene ( 4 ) and its tert‐butyl‐derivative ( 1 ) with [(cod)RhCl]2 yielded the mono‐ and disubstituted binuclear rhodium complexes 2 , 3 , and 5 . In all cases, a C2‐symmetrical structure was proved in solution, apparently caused by a fast intramolecular exchange process between cone conformation and 1, 3‐alternating conformation. The X‐ray crystal structure determination of 5 confirmed [(calixarene)RhCl]2‐coordination through two opposite phosphorus atoms with a P ⃜P separation of 345 pm. The complex displays crystallographic inversion symmetry, and the Rh2Cl2 core is thus exactly planar. Reaction of 1 and of the bis(triazaphosphorindionyloxy)‐bis(methoxy)‐substituted tert‐butyl‐calix‐[4]arene ( 7 ) with (cod)Rh(acac) in equimolar ratio and subsequent reaction with HBF4 led to the expected cationic monorhodium complexes 5 and 8 , involving 1, 3‐alternating P‐Rh‐P‐coordination. The cone conformation in solution was proved by NMR spectroscopy and characteristic values of the 1J(PRh) coupling constants in the 31P‐NMR‐spectra. Reaction of equimolar amounts of 4 with (cod)Rh(acac) or (nbd)Rh(acac) led, by substitution of the labile coordinated acetylacetonato and after addition of HBF4, to the corresponding mononuclear cationic complexes 9 and 10 . Only two of the four phosphorus atoms in 9 and 10 are coordinated to the central metal atom. Displacement of either cycloocta‐1, 5‐diene or norbornadiene was not observed. For both compounds, the cone conformation was proved by NMR spectroscopy. Reaction of 4 with (cod)PtCl2 led to the PtCl2‐complex ( 11 ). As for all compounds mentioned above, only two phosphorus atoms of the ligand coordinate to platinum, while two phosphorus atoms remain uncoordinated (proved by δ31P and characteristic values of 1J(PPt)). NMR‐spectroscopic evidence was found for the existence of the cone conformation in the cis‐configuration of 11 .  相似文献   

6.
A novel synthetic route to 4‐pyridazineacetic acids 10 – 12 has been achieved by the ring‐expansion reaction of N‐cyanomethylated 3‐pyrazoline‐4‐acetic acids 7 – 9 . 1H‐Pyrazole‐4‐acetic acids 1 – 3 were reacted with iodoacetonitrile in the presence of triethylamine in refluxing acetonitrile to give the corresponding C‐cyanomethylated 1H‐pyrazole‐4‐acetic acids 4 – 6 as major products together with N‐cyanomethylated 3‐pyrazoline‐4‐acetic acids 7 and 8 as minor products. On the other hand, reactions of 1 and 3 with chloroacetonitrile in the presence of triethylamine in refluxing chloroform afforded the corresponding N‐cyanomethylated 3‐pyrazoline‐4‐acetic acids 7 and 9 as major products. Thermal treatment of 7 – 9 with sodium hydride in N,N‐dimethylformamide caused ring expansion to yield the corresponding 4‐pyridazineacetic acids 10 – 12 .  相似文献   

7.
The syntheses of two 2′,3′‐fused bicyclic nucleoside analogues, i.e., 1‐[(4aR,5R,7R,7aS)‐hexahydro‐5‐(hydroxymethyl)‐4,4‐dioxidofuro[3,4‐b][1,4]oxathiin‐7‐yl]pyrimidine‐2,4(1H,3H)‐dione ( 1a ) and 1‐[(4aS,5R,7R,7aS)‐hexahydro‐7‐(hydroxymethyl)‐1,1‐dioxido‐2H‐furo[3,4‐b][1,4]thiazin‐5‐yl]pyrimidine‐ 2,4(1H,3H)‐dione ( 1b ), are described, the key step being an intramolecular hetero‐Michael addition. Their structures and conformations, previously solved by X‐ray crystallography, were analyzed in more detail, using 1D‐ and 2D‐NMR as well as HR‐MS analyses.  相似文献   

8.
The new tetranuclear alkoxide hexa‐μ2‐isopropoxy‐1:2κ4O;1:3κ4O;1:4κ4O‐hexaisopropoxy‐2κ2O,3κ2O,4κ2O‐trialumin­ium(III)­neodymium(III), [Nd{Al(C3H7O)4}3], has a metal–oxy­gen NdAl3O12 core which consists of four metal atoms arranged in an approximately planar triangular geometry. The central Nd atom is six‐coordinated by O atoms and the Al atoms are four‐coordinated by O atoms.  相似文献   

9.
Synthesis and Structure of Highly Functionalized 2, 3‐Dihydro‐1H‐1, 3, 2‐diazaboroles A series of differently substituted 2, 3‐dihydro‐1H‐1, 3, 2‐diazaboroles has been prepared by various methods. 1, 3‐Di‐tert‐butyl‐2‐trimethylsilylmethyl‐1H‐1, 3, 2‐diazaborole ( 7 ), 2‐isobutyl‐1, 3‐bis(1‐cyclohexylethyl)‐1H‐1, 3, 2‐diazaborole ( 8 ), 1, 3‐bis‐(1‐cyclohexylethyl)‐2‐trimethylsilylmethyl‐1H‐1, 3, 2‐diazaborole ( 9 ) 1, 3‐bis(1‐methyl‐1‐phenyl‐propyl)‐2‐trimethylsilylmethyl‐1H‐1, 3, 2diazaborole ( 10 ) and 2‐bromo‐1, 3‐bis(1‐methyl‐1‐phenyl‐propyl)‐1H‐1, 3, 2‐diazaborole ( 11 ) were formed by reaction of the corresponding 1, 4‐diazabutadienes with the boranes Me3SiCH2BBr2, iBuBBr2 and BBr3 followed by reduction of the resulting borolium salts [R1 = tBu, Me(cHex)CH, [Me(Et)Ph]C; R2 = Me3SiCH2, iBu, Br] with sodium amalgam. Treatment of 11 and 12 with silver cyanide afforded the 2‐cyano‐1, 3, 2‐diazaboroles 13 and 14 . An alternative route to compound 8 is based on the alkylation of 2‐bromo‐1, 3, 2‐diazaborole 12 with isobutyllithium. Equimolar amounts of 13 and isobutyllithium give rise to the formation of 15 . The new compounds were characterized by 1H‐, 13C‐, 11B‐NMR, IR and mass spectra. The molecular structures of 7 and meso ‐10 were confirmed by x‐ray structural analysis.  相似文献   

10.
Two series of novel 4‐acyl‐2,5‐disubstituted‐3‐hydroxypyrazoles 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h and 4‐arylcarbonyl‐3‐substitutedisoxazol‐5‐ones 7a , 7b , 7c , 7d , 7e , 7f , 7g , 7h , 7i were synthesized by the Scotton–Baumann reaction of 2,5‐disubstituted‐2,4‐dihydro‐pyrazol‐3‐ones 1 or 3‐substituted‐4H‐isoxazol‐5‐ones 6 and various acyl chlorides, followed by the Fries rearrangement in the presence of calcium hydroxide and calcium oxide as the catalyst. Their structures were confirmed by IR, 1H NMR, mass spectroscopy, and elemental analyses. 1H NMR indicated that compounds 3 existed in enol forms and compounds 7 in keto configurations. The results of preliminary bioassays showed that some of the title compounds 3 and 7 exhibited moderate to good herbicidal activities against Brassica campestris L. at the concentration of 100 mg/L. Isoxazole compounds 7 showed better herbicidal activity against B. campestris L. than pyrazole compounds 3 did at the concentration of 100 mg/L. Moreover, most of the isoxazole compounds displayed higher herbicidal activity against B. campestris L. than Echinochloa crus‐galli. However, these compounds showed weak herbicidal activities at the concentration of 10 mg/L.  相似文献   

11.
Tandem aza‐Wittig reaction of iminophosphorane with 1, 4‐phenylene diisocyanate followed by intramolecular heteroconjugate addition annulation after addition of a nucleophilic reagent (amine, phenol, and alcohol), in the presence of catalytic K2CO3 or NaOR, gives selectively the functionalized substituted 2, 2′‐di(alkylamino, aryloxy)‐3, 3′‐(1, 4‐phenylene)bis(thieno[3, 2‐d]pyrimidin‐4(3H)‐ones) and 2, 2′‐di(alkylamino or alkoxy)‐3, 3′‐(1, 4‐phenylene)bis(3, 5, 6, 7‐tetrahydro‐4H‐cyclopenta[4, 5]thieno[2, 3‐d]pyrimidin‐4‐ones).  相似文献   

12.
La3Au4In7 was prepared by arc‐melting of the elements and subsequent annealing at 970 K. X‐ray diffraction of powders and single crystals yielded I2/m11, mI28, a = 460.42(5) pm, b = 1389.5(1) pm, c = 1039.6(2) pm, α = 90.77(1)°, wR2 = 0.0621, 1089 F2 values, 46 variables. The structure of La3Au4In7 is of a new type. It may be considered as a monoclinically distorted, ordered variant of the La3Al11 type. The structural relation with the family of BaAl4 related compounds is discussed on the basis of a group‐subgroup scheme. The gold and indium atoms in La3Au4In7 build a three‐dimensional [Au4In7] polyanion in which the lanthanum atoms fill distorted pentagonal and hexagonal channels. Within the polyanion short Au–In and In–In distances are indicative of strongly bonding Au–In and In–In interactions.  相似文献   

13.
In the title compound, [Co(C6H15N3)(C7H15N2S)]S2O6·H2O, the Co—C bond distance is 1.9930 (13) Å, which is shorter than for related compounds with the linear 1,6‐di­amino‐3‐thia­hexan‐4‐ide anion in place of the macrocyclic 1‐thia‐4,7‐diazacyclo­decan‐8‐ide anion. The coordinated carbanion produces an elongation of 0.102 (7) Å of the Co—N bond to the 1,4,7‐tri­aza­cyclo­nonane N atom in the trans position. This relatively small trans influence is presumably a result of the tri­amine ligand forming strong bonds to the CoIII atom.  相似文献   

14.
The crystal structures of K4BaSi3O9 and K4CaSi3O9 have been characterized by X‐ray diffraction techniques as well as Raman spectroscopy. The structure of K4CaSi3O9 has been refined from powder diffraction data via the Rietveld method using polycrystalline material prepared from solid state reactions. The compound is isostructural with form I of K4SrSi3O9. It crystallizes with 16 formula units in a cubic primitive cell (a = 15.94014(3) Å, V = 4050.20(1) Å3) and adopts space group . K4CaSi3O9 belongs to the group of cyclosilicates and contains highly puckered twelve‐membered [Si12O36]‐rings centered on the . Five of the seven crystallographically independent alkaline and alkaline earth cations are surrounded by six oxygen ligands in the form of distorted octahedra, which share opposite triangular faces and form non‐intersecting columns parallel to the body diagonals of the cubic unit cell. This arrangement corresponds to one of the cubic cylinder or rod packings. The two remaining sites have more irregular coordination environments with eight next oxygen neighbors. High temperature X‐ray powder diffraction data have been collected to determine the thermal expansion of this material: between room temperature and 700 °C the coefficient of thermal expansion has a value of α = 12.9(2) × 10?6 [°C?1]. Single crystals of K4BaSi3O9 have been obtained from the devitrification of a glass with the same composition. The structure was determined from a single crystal diffraction data set collected at ?100 °C and refined to a final R index of 0.0298 for 1288 observed reflections (I > 2σ(>I)). The compound is isostructural with modification II of K4SrSi3O9. Basic crystallographic data are as follows: space group Ama2, a = 11.0695(15) Å, b = 8.0708(10) Å, c = 11.905(2) Å, V = 1063.6(3) Å3, Z = 4. With respect to the silicate anions the material can be classified as a sechser single chain silicate. The crankshaft‐like chains run parallel to [100] and are linked by K and Ba cations, which are distributed among five crystallographically independent sites. The coordination polyhedra of two of the non‐tetrahedral cations can be described by distorted octahedra sharing opposite triangular faces. They build non‐intersecting columns parallel to [011] and [0‐11], respectively. The other sites exhibit more irregular coordination spheres with 7‐9 neighbours.  相似文献   

15.
A boraamidinato ligand [PhB(N‐2,6‐iPr2C6H3)2]2? was employed to stabilize a new family of multiply bonded dimolybdenum complexes [MoCl(μ‐κ2‐PhB(N‐2,6‐iPr2C6H3)2)]2 ( 4 ) and [Mo(μ‐κ2‐PhB(N‐2,6‐iPr2C6H3)2)]2n? (n=0 ( 5 ), 1 ( 6 ), 2 ( 7 )), with the respective formal Mo?Mo bond orders of 3, 4, 4.5, and 5. Each metal center in 5 – 7 is two‐coordinate with respect to the ligands. Of particular interest is the quadruply bonded dimolybdenum complex 5 , featuring an unprecedented angular conformation. The bent Mo2N4 core of 5 distorts toward planarity upon reduction. As a result, compound 7 features a planar Mo2N4 core, while that of 6 is still bent but less significantly than that of 5 . Additionally, the Mo?Mo bond lengths of 4 – 7 systematically decrease as the valency of the central Mo2 units decreases. Complex 7 features the shortest Mo?Mo bond length (2.0106(5) Å) yet reported.  相似文献   

16.
An efficient enantioselective synthesis of 3‐acetoxy transβ‐lactams 7a and 7b via [2+2] cycloaddition reactions of imines 4a and 4b , derived from a polycyclic aromatic amine and bicyclic chiral acid obtained from (+)‐car‐3‐ene, is described. The cycloaddition was found to be highly enantioselective, producing only trans‐(3R,4R)‐N‐azetidin‐2‐one in very good yields. This is the first report of the synthesis of enantiomerically pure transβ‐lactams 7a and 7b with a polycyclic aromatic substituent at N(1) of the azetidin ring.  相似文献   

17.
Synthesis and Properties of the Layered Perovskite Phase Sr3Mo1.5Zn0.5O7‐δ The new layered perovskite phase Sr3Mo1.5Zn0.5O7‐δ was synthesized by solid state reaction using a Zn/ZnO oxygen buffer. The crystal structure was refined from X‐ray powder pattern by the Rietveld method. The compound crystallizes tetragonal in the space group I4/mmm (no. 139) with the lattice parameters a = 3.9631(3) Å, c = 20.583(1) Å. An oxygen deficiency corresponding to δ ≈ 0.25 was determinated, indicating the presence of molybdenum in mixed valence (Mo4+ and Mo6+).  相似文献   

18.
The new cubic compound Fe0.5Ni0.5P3 (a = 775.29(5) pm) as well as the known compounds CoP3 and NiP3 were synthesized from the elemental components using tin as a flux. Their skutterudite (CoAs3) type structures were refined from single‐crystal X‐ray data. The new compound GdFe4P12 was prepared by reaction of an alloy Gd1/3Fe2/3 with phosphorus in a tin flux. Its cubic “filled” skutterudite (LaFe4P12 type) structure was refined from single‐crystal X‐ray data: a = 779.49(4) pm, R = 0.019 for 304 structure factors and 11 variable parameters. SmFe4P12 shows Van Vleck paramagnetism while GdFe4P12 is a soft ferromagnet with a Curie temperature of TC = 22(5) K. Both are metallic conductors. The new isotypic polyarsenide NdFe4As12 (a = 830.9(1) pm) was obtained by reacting NdAs2 with iron and arsenic in the presence of a NaCl/KCl flux. The new isotypic polyantimonide Eu0.54(1)Co4Sb12 (a = 909.41(8) pm) was prepared by reaction of EuSb2 with cobalt and antimony. Its structure was refined from single‐crystal X‐ray data to a residual of 0.024 (137 F values, 12 variables). A comparison of the Fe–P and P–P bond lengths in the compounds AFe4P12, where the A atoms (A = Ce, Eu, Gd, Th) have differing valencies, suggests that the Fermi level cuts through Fe–P bonding and P–P antibonding bands.  相似文献   

19.
The title compounds were prepared from valine‐derived N‐acylated oxazolidin‐2‐ones, 1 – 3, 7, 9 , by highly diastereoselective (≥ 90%) Mannich reaction (→ 4 – 6 ; Scheme 1) or aldol addition (→ 8 and 10 ; Scheme 2) of the corresponding Ti‐ or B‐enolates as the key step. The superiority of the ‘5,5‐diphenyl‐4‐isopropyl‐1,3‐oxazolidin‐2‐one’ (DIOZ) was demonstrated, once more, in these reactions and in subsequent transformations leading to various t‐Bu‐, Boc‐, Fmoc‐, and Cbz‐protected β2‐homoamino acid derivatives 11 – 23 (Schemes 3–6). The use of ω‐bromo‐acyl‐oxazolidinones 1 – 3 as starting materials turned out to open access to a variety of enantiomerically pure trifunctional and cyclic carboxylic‐acid derivatives.  相似文献   

20.
The reactions of α‐ferrocenylmethylidene‐β‐oxocarboxylates ( 1 , 2 , 3a , and 3b ) with N‐methyl‐ and N‐(2‐hydroxyethyl)hydrazines ( 5a , 5b ) afford ethyl 1‐alkyl‐5‐aryl(methyl)‐3‐ferrocenylpyrazole‐4‐carboxylates ( 6a , 6b , 6c , 6d , 6e ) (~50%) and N‐alkylhydrazine insertion products, viz., ethyl (N′‐acyl‐N′‐alkylhydrazino)‐3‐ferrocenylpropanoates ( 7a , 7b , 7c , 7d , 7e ) (~20%) and 1‐acyl‐2‐(N′‐alkyl‐N′‐ethoxycarbonylhydrazino)‐2‐ferrocenylethanes ( 8a , 8b , 8c , 8d , 8e ) (~10%). The structures of the compounds obtained were established based on the spectroscopic data and X‐ray diffraction analysis (for pyrazoles 6a and 6b ). J. Heterocyclic Chem., (2011).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号