首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new 5‐(1‐aryl‐1H‐pyrazole‐4‐yl)‐1H‐tetrazoles 4a‐l were synthesized via [3 + 2] cycloaddition reaction from 1‐aryl‐1H‐pyrazole‐4‐carbonitriles 3a‐l , sodium azide and ammonium chloride, using dimethylformamide (DMF) as solvent, in good yields: 64–85%. The structures of these newly synthesized compounds were determined from the IR, 1H‐ and 13C‐NMR spectroscopic data and elemental analyses.  相似文献   

2.
Some new compounds (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 5a–e were prepared by 1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐ethanone and various aromatic aldehydes. Then one pot reaction was happened by compounds 5a–e with hydrazine hydrate in acetic acid or propionic acid, respectively, to give the title compounds 1acyl‐5‐aryl‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐4,5‐dihydro‐1H‐pyrazoles 6a–i . All structures were established by MS, IR, CHN, 1H‐NMR and 13C‐NMR spectral data. J. Heterocyclic Chem., (2012).  相似文献   

3.
Some new (3,5‐aryl/methyl‐1H‐pyrazol‐1‐yl)‐(5‐arylamino‐2H‐1,2,3‐triazol‐4‐yl)methanones were synthesized and characterized by 1HNMR, 13C NMR, MS, IR spectra data and elemental analyses or high resolution mass spectra (HRMS). During the procedure, Dimroth rearrangement was used in this synthesis.  相似文献   

4.
3‐Methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol‐3‐yl)methylene)‐1H‐pyrazol‐5(4H)‐ones (5a‐i) was prepared by the condensation reaction of different 3‐formyl‐2‐phenylindole derivatives (2a‐i) and 3‐methyl‐1‐phenyl‐2‐pyrazoline‐5‐one in quantitative yield by applying various green synthetic methods as grinding, microwave irradiation using different catalysts under solvent‐free mild reaction conditions with high product yields. The structures of the synthesized compounds were characterized on the basis of elemental analysis, infrared, 1HNMR, 13C NMR, and mass spectral data. The synthesized compounds were screened for free radical scavenging, antimicrobial, and DNA cleavage activities. Most of the tested compounds belonging to the 3‐methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol‐3‐yl)methylene)‐1H‐pyrazol‐5(4H)‐ones series exhibited promising activities.  相似文献   

5.
The new N‐salicylideneheteroarenamines 1 – 4 were prepared by reacting the biologically relevant 3‐hydroxy‐4‐pyridinecarboxaldehyde ( 5 ) with 1H‐imidazol‐1‐amine ( 6 ), 1H‐pyrazol‐1‐amine ( 7 ), 1H‐1,2,4‐triazol‐1‐amine ( 8 ), and 1H‐1,3,4‐triazol‐1‐amine ( 9 ). Solution 1H‐, 13C‐, and 15N‐NMR were used to establish that the hydroxyimino form A is the predominant tautomer. A combination of 13C‐ and 15N‐CPMAS‐NMR with X‐ray crystallographic studies confirms that the same form is present in the solid state. The stabilities and H‐bond geometries of the different forms, tautomers and rotamers, are discussed by using B3LYP/6‐31G** calculations.  相似文献   

6.
The 1H‐pyrazole‐3‐carboxylic acid 1 was converted via reactions of its acid chloride 3 with various asymmetrical disubstituted urea and alcohol derivatives into the corresponding novel 4‐benzoyl‐N‐(N′,N′‐dialkylcarbamyl)‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxamide 4a , b and alkyl 4‐benzoyl‐1‐(4‐methoxyphenyl)‐5‐phenyl‐1H‐pyrazole‐3‐carboxylate 7a‐c , respectively, in good yields (57%‐78%). Friedel‐Crafts reactions of 3 with aromatic compouns for 15 min.‐2 h led to the formation of the 4‐3‐diaroyl‐1‐(4‐hydroxyphenyl)‐5‐phenyl‐1H‐pyrazoles 9a‐c , 4‐benzoyl‐1‐(4‐methoxyphenyl)‐3‐aroyl‐5‐phenyl‐1H‐pyrazoles 10a , b and than from the acylation reactions of 9a‐c were obtained the 3,4‐diaroyl‐1‐(4‐acyloxyphenyl)‐5‐phenyl‐1H‐pyrazoles 13a‐d . The structures of all new synthesized compounds were established by NMR experiments such as 1H, and 13C, as well as 2D COSY and IR spectroscopic data, and elemental analyses. All the compounds were evaluated for their antimicrobial activities (agar diffusion method) against eight bacteria and two yeasts.  相似文献   

7.
An efficient one‐pot synthesis of 3‐[(4,5‐dihydro‐1H‐pyrrol‐3‐yl)carbonyl]‐2H‐chromen‐2‐one (=3‐[(4,5‐dihydro‐1H‐pyrrol‐3yl)carbonyl]‐2H‐1‐benzopyran‐2‐one) derivatives 4 by a four‐component reaction of a salicylaldehyde 1 , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one, a benzylamine 2 , and a diaroylacetylene (=1,4‐diarylbut‐2‐yne‐1,4‐dione) 3 in EtOH is reported. This new protocol has the advantages of high yields (Table), and convenient operation. The structures of these coumarin (=2H‐1‐benzopyran‐2‐one) derivatives, which are important compounds in organic chemistry, were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

8.
A new series of nine derivatives of 4H‐pyrano[3,2‐c]chromene and 12 derivatives of N‐thiazolyl‐4H‐quinoline of 1H‐pyrazole has been synthesized by one pot base catalyzed cyclocondensation reaction of 1H‐pyrazole‐4‐carbaldehyde, malononitrile, and 4‐hydroxy coumarin or β‐enaminones, respectively. All the synthesized compounds were characterized by elemental analysis, FT‐IR, 1H NMR, 13C NMR spectral data and were further screened, against a panel of pathogenic strains of bacteria and fungi.  相似文献   

9.
1H, 13C and two‐dimensional NMR analyses were applied to determine the NMR parameters of 6‐(2′,3′‐dihydro‐1′H‐inden‐1′‐yl)‐1H‐indene. The measurements were accomplished with 0.5 mg of the substance, this quantity being sufficient to determine the chemical shifts of all the H and C atoms, and also the appropriate coupling constants and to give the complete NMR resonance assignments of the molecule. The predicted patterns of the four different H atoms of the methylene groups of the indane structural element coincided completely with the complex patterns in the NMR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
By the reaction aminomethylation, chloromethylation and acylation of 4‐methyl‐4H‐1,2,4‐triazole‐3‐thiol, 4‐methyl‐1‐substituted‐1H‐1,2,4‐triazole‐5(4H)‐thione 1‐8 were obtained. Molecular structure of the obtained compounds was confirmed by an elemental analysis, IR, 1H NMR and 13C NMR spectra and additionally by X‐ray analysis for 2. Six new compounds 1,2,4‐7 were tested for antibacterial activity against Mycobacterium smegmatis, Mycobacterium phlei and avirulent strain Mycobacterium H37Ra.  相似文献   

11.
Novel 2‐{4‐[1‐(pyridine‐2‐yl)‐1H‐pyrazol‐3‐yl] phenyl}‐2H‐naphtho [1,2‐d] [1,2,3] triazolyl fluorescent derivatives were synthesized from p‐nitrophenylacetic acid and 2‐hydrazino pyridine through Vilsmeier–Haack and diazotization reactions. Photophysical properties were evaluated, and results show that compounds have good fluorescence quantum yields. Thermal analysis showed that they are reasonably stable. The structures of the compounds were confirmed by FT‐IR, 1H NMR, 13C NMR, and mass spectral and elemental analysis.  相似文献   

12.
A new method based on reaction of 4‐bromobut‐2‐enoates with N‐alkylimidazoles was proposed for obtaining 1R‐1H‐imidazo[1,2‐a]pyridin‐4‐ium‐8‐olate and 1‐R‐8‐methoxy‐1H‐imidazo[1,2‐a]pyridin‐4‐ium derivatives. The structures of synthesized compounds were confirmed by 1H, 13C NMR, elemental analysis, and X‐ray data.  相似文献   

13.
The ring‐closure reactions of N‐arylthiomethylaroylamide derivatives ( 1a‐g ) in the presence of phospho ‐rus oxychloride gave 2‐aryl‐4H‐1,3‐benzo‐thiazines (2a‐g). 2‐(3‐Chlorophenyl)‐6‐methyl‐4H‐1,3‐benzoth‐iazine ( 2b ) was reduced with Zn to obtain the corresponding 2,3‐dihydro derivative ( 3b ). Potassium permanganate oxidation of 2‐(4‐chlorophenyl)‐2,3‐diethoxy‐4H‐ ( 2e ) and 2‐(2‐fluorophenyl)‐6,7‐diefhoxy‐4H‐1,3‐benzo‐thiazines ( 2g ) gave the corresponding 4‐ones ( 4e,g ). The reactions of 2‐(4‐chlorophenyl)‐6‐mefhyl‐4H‐1,3‐benzofhiazine ( 2c ) with substituted acetyl chlorides led to linearly condensed ß‐lactams ( 5a,b ). The structures of the compounds studied were confirmed by 1H and 13C NMR and by their characteristic mass spectrometric fragmentations.  相似文献   

14.
The title molecule, 2‐(4‐chlorophenyl)‐1‐methyl‐1H‐benzo[d]imidazole (C14H11ClN2), was prepared and characterized by 1H NMR, 13C NMR, IR, and single‐crystal X‐ray diffraction. The molecular geometry, vibrational frequencies, and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the title compound in the ground state have been calculated by using the Hartree‐Fock (HF) and density functional theory (DFT/B3LYP) method with 6‐31G(d) basis sets, and compared with the experimental data. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and GIAO 1H and 13C NMR chemical shifts show good agreement with experimental values. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6‐31G(d) basis set by applying the Onsager and the polarizable continuum model (PCM). Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis, and nonlinear optical (NLO) properties of the title compound were investigated by theoretical calculations. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
Synthesis of N‐(1H‐imidazoline‐2‐yl)‐1H‐benzimidazol‐2‐amine was carried out under microwave irradiation (MWI) conditions. Dynamic 1H NMR investigation of N‐(1H‐imidazoline‐2‐yl)‐1H‐benzimidazol‐2‐amine compound was reported at temperature range of 223–333 K in DMF‐d7. Some physical parameters, such as coalescence temperature (Tc), the free energy of activation (ΔG??) and rate constant (k) values were calculated from its 1H NMR spectra at various temperatures. Electrochemical feature of this compound was investigated by cyclic (CV) and square wave voltammetry (SWV).  相似文献   

16.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

17.
Novel tetraethyl ethylene‐1,1‐bisphosphonate esters derived from 1H‐indazole, 1H‐pyrazolo[3,4‐b]pyridine, and 1H‐pyrazolo[3,4‐b]quinoline were synthesized by a Michael addition reaction of tetraethyl ethylidene‐1,1‐bisphosphonate with the corresponding heterocycle, using conventional heating and microwave‐assisted methods. The microwave‐assisted method provides shorter reaction times and better yields. The hydrolysis of bisphosphonates afforded the corresponding bisphosphonic acids or salt, using concentrated hydrochloric acid or TMSBr/collidine, respectively. All new compounds were fully characterized, and their structures were assigned using 1H, 31P, and 13C NMR and IR spectroscopies and mass spectrometry. The molecular structure of compound 6 was confirmed by X‐ray diffraction studies.  相似文献   

18.
The synthesis of some new S‐nucleosides of 5‐(4‐pyridyl)‐4‐aryl‐4H‐1,2,4‐triazole‐3‐thiols ( 4a‐n ) is described. Direct glycosylation of ( 4a‐n ) with tetra‐O‐acetyl‐α‐D‐glucopyranosyl bromide in the presence of potassium hydroxide followed by deacetylation using dry ammonia in methanol gave the corresponding 3‐S‐(ñ‐D‐glucopyranosyl)‐5‐(4‐pyridyl)‐4‐aryl‐4H‐1,2,4‐triazoles ( 6a‐n ) in good yields. All the compounds were fully characterized by means of 1HNMR, 13C NMR spectra and elemental analyses. To assist in the interpretation of the spectroscopic data, the crystal structure of 3‐S‐(2′,3′,4′,6′‐tetra‐O‐acetyl‐β‐D‐glucopyranosyl)‐5‐(4‐pyridyl)‐4‐phenyl‐4H‐1,2,4‐triazole ( 5a ) was determined by X‐ray diffraction.  相似文献   

19.
Synthesis and Structure of Highly Functionalized 2, 3‐Dihydro‐1H‐1, 3, 2‐diazaboroles A series of differently substituted 2, 3‐dihydro‐1H‐1, 3, 2‐diazaboroles has been prepared by various methods. 1, 3‐Di‐tert‐butyl‐2‐trimethylsilylmethyl‐1H‐1, 3, 2‐diazaborole ( 7 ), 2‐isobutyl‐1, 3‐bis(1‐cyclohexylethyl)‐1H‐1, 3, 2‐diazaborole ( 8 ), 1, 3‐bis‐(1‐cyclohexylethyl)‐2‐trimethylsilylmethyl‐1H‐1, 3, 2‐diazaborole ( 9 ) 1, 3‐bis(1‐methyl‐1‐phenyl‐propyl)‐2‐trimethylsilylmethyl‐1H‐1, 3, 2diazaborole ( 10 ) and 2‐bromo‐1, 3‐bis(1‐methyl‐1‐phenyl‐propyl)‐1H‐1, 3, 2‐diazaborole ( 11 ) were formed by reaction of the corresponding 1, 4‐diazabutadienes with the boranes Me3SiCH2BBr2, iBuBBr2 and BBr3 followed by reduction of the resulting borolium salts [R1 = tBu, Me(cHex)CH, [Me(Et)Ph]C; R2 = Me3SiCH2, iBu, Br] with sodium amalgam. Treatment of 11 and 12 with silver cyanide afforded the 2‐cyano‐1, 3, 2‐diazaboroles 13 and 14 . An alternative route to compound 8 is based on the alkylation of 2‐bromo‐1, 3, 2‐diazaborole 12 with isobutyllithium. Equimolar amounts of 13 and isobutyllithium give rise to the formation of 15 . The new compounds were characterized by 1H‐, 13C‐, 11B‐NMR, IR and mass spectra. The molecular structures of 7 and meso ‐10 were confirmed by x‐ray structural analysis.  相似文献   

20.
The nitration of 5‐amino‐1H‐tetrazole ( 1 ), 5‐amino‐1‐methyl‐1H‐tetrazole ( 3 ), and 5‐amino‐2‐methyl‐2H‐tetrazole ( 4 ) with HNO3 (100%) was undertaken, and the corresponding products 5‐(nitrimino)‐1H‐tetrazole ( 2 ), 1‐methyl‐5‐(nitrimino)‐1H‐tetrazole ( 5 ), and 2‐methyl‐5‐(nitramino)‐2H‐tetrazole ( 6 ) were characterized comprehensively using vibrational (IR and Raman) spectroscopy, multinuclear (1H, 13C, 14N, and 15N) NMR spectroscopy, mass spectrometry, and elemental analysis. The molecular structures in the crystalline state were determined by single‐crystal X‐ray diffraction. The thermodynamic properties and thermal behavior were investigated by using differential scanning calorimetry (DSC), and the heats of formation were determined by bomb calorimetric measurements. Compounds 2, 5 , and 6 were all found to be endothermic compounds. The thermal decompositions were investigated by gas‐phase IR spectroscopy as well as DSC experiments. The heats of explosion, the detonation pressures, and velocities were calculated with the software EXPLO5, whereby the calculated values are similar to those of common explosives such as TNT and RDX. In addition, the sensitivities were tested by BAM methods (drophammer and friction) and correlated to the calculated electrostatic potentials. The explosion performance of 5 was investigated by Koenen steel sleeve test, whereby a higher explosion power compared to RDX was reached. Finally, the long‐term stabilities at higher temperatures were tested by thermal safety calorimetry (FlexyTSC). X‐Ray crystallography of monoclinic 2 and 6 , and orthorhombic 5 was performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号