首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine new 4‐substituted 2‐phenylimidazole derivatives have been synthesized by aldol condensation of 2‐phenylimidazole‐4‐carbaldehyde with various active methylene compounds. In case of non‐symmetric active methylene compound used, the stereospecific formation of only one cis‐trans isomer has been observed. The predominant formation of products with bulkier substituents standing opposite on double bond formed by aldol condensation has been proved. cis‐trans Isomerism of three unsymmetrically substituted products has been determined by 1H coupled 13C NMR experiments. 3‐[(2‐Phenylimidazol‐4‐yl)methylene]pentane‐2,4‐dione has been characterized by single crystal X‐ray structural analysis as well. Selected bond lengths and angles have proved the expected large mesomerical stabilisation in the molecule. The hydrogen bond in crystal phase has been observed.  相似文献   

2.
The cycloaddition reaction of cyclic imidates, 2‐benzyl‐5,6‐dihydro‐4H‐1,3‐oxazines 1a , 1b , 1c , 1d , 1e , 1f , with dimethyl acetylenedicarboxylate 2 , trimethyl ethylenetricarboxylate 4 , or dimethyl 2‐(methoxymethylene)malonate 6 afforded new fused heterocyclic compounds, such as methyl (6‐oxo‐3,4‐dihydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐ylidene)acetates 3a , 3b , 3c , 3d , 3e , 3f (71–79%), dimethyl 2‐(6‐oxo‐3,4,6,7‐tetrahydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐yl)malonates 5b , 5c , 5d , 5e , 5f (43–71%), or methyl 6‐oxo‐3,4‐dihydro‐2H,6H‐pyrido[2,1‐b]‐1,3‐oxazine‐7‐carboxylates 7a , 7b , 7c , 7d , 7e , 7f (32–59%), respectively. In these reactions, 1a , 1b , 1c , 1d , 1e , 1f (cyclic imidates, iminoethers) functioned as their N,C‐tautomers (enaminoethers) 2 to α,β‐unsaturated esters 2 , 4, and 6 to give annulation products 3 , 5 , and 7 following to the elimination of methanol, respectively. J. Heterocyclic Chem., (2011).  相似文献   

3.
The reaction of 2‐thioxo‐4‐thiazolidinone ( 1a ) with phosphorus ylides 2a and 2b afforded compounds 5 and 6. On the other hand, formylmethylenetriphenylphosphorane (2c) reacts with 1a and its N‐methyl derivative 1b to give the new complicated phosphonium ylides 7a,b, respectively. Reactions of 1b with ylides 2a and 2d gave rise to the olefinic compound 8 and the new phosphorane product 9. Moreover, dialkyl phosphites 3a,b and trialkyl phosphites 4a–c react with 1a to give both the alkylated products 10a–c and the dimeric compounds 11,12. A mechanism is proposed to explain the formation of the new products.© 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 337–341, 1999  相似文献   

4.
Reactions of 3‐chlorobenzo[b]thiophene‐2‐carbonyl chloride with 2‐alkyl‐2‐aminopropanamides have been used to prepare a series of carboxamides 1a‐d (yields 61‐85%). The products were submitted to base‐catalysed ring closure reactions to give the corresponding 4,5‐dihydro‐1H‐imidazol‐5‐ones 2a‐d (yields 69‐97%). By N‐methylation and N‐benzylation were prepared the corresponding 1‐alkyl derivatives 3a (91%) and 3b (85%). These two alkyl derivatives were studied from the standpoint of potential replacement of 3‐chlorine substituent by piperidine via the Buchwald‐Hartwig reaction. It was found that the reaction gives besides except required products of C‐N coupling 5a (14%) and 5b (12%) also products of reductive dechlorination 4a (max. 57%) and 4b (max. 56%). The reductive dechlorination product 4a is formed exclusively (42%) if butyl‐di‐(1‐adamantyl)phosphine (BDAP) is used.  相似文献   

5.
5‐Acetyl‐3‐amino‐4‐aryl‐6‐methylthieno[2,3‐b]pyridine‐2‐carboxamides ( 5a,b ) were reacted with triethyl orthoformate or nitrous acid to give the corresponding pyrimidinones 6a,b and triazinones 7a,b . The reaction of 5a,b with acetic anhydride was carried out and its products were identified as a mixture of 8‐acetyl‐9‐aryl‐2,7‐dimethylpyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine‐4(3H)‐one ( 9a,b ) and related 5‐acetyl‐4‐aryl‐3‐biacetylamino‐6‐methylthieno[2,3‐b]pyridine‐2‐carbonitrile ( 10a,b ). Reaction of 7a with some halocompounds afforded the N‐alkylated triazinones 8a‐c . Chlorination of 6a,b and 9a,b with phosphorus oxychloride produced 4‐chloropyrimidines 11a‐d which were used as precursors for the rest of the target heterocycles. Some of the prepared compounds were tested in vitro for their antimicrobial activities.  相似文献   

6.
New N,N'‐bis(alkoxycarbonyl)‐L‐cystine bis(methylamides) 4a, 4b and N,N'‐bis(benzyloxycarbonyl)‐L‐cystine bis(methylamide) 4c have been synthesized by mixed anhydride method from the essential amino acid L‐cystine 1 in good yield. These cystine bis(methylamides) 4a,b,c have been cyclized with sulfuryl chloride. New 2‐methyl‐4‐amino‐3‐isothiazolone and 5‐chloro‐2‐methyl‐4‐amino‐3‐isothiazolone hydrobromide salts 7, 8 have been obtained by deacylation of 2‐methyl‐4‐(benzyloxycarbonyl)amino‐3‐isothiazolone 5c and 5‐chloro‐2‐methyl‐4‐(benzyloxycarbonyl)amino‐3‐isothiazolone 6c with hydrogen bromide in acetic acid. The microbicidal effect of the new 2‐methy]‐3‐isothiazolones 5a,b,c; 6a,b,c; 7 and 8 compounds obtained by the above method has been investigated.  相似文献   

7.
Treatment of 3‐aryl‐2‐thioxo‐1,3‐thiazolidin‐4‐ones 1 with CN? and NCO? effected the ring cleavage providing [(cyanocarbonothioyl)amino]benzenes 4 and arylisothiocyanates 5 , respectively. Similar treatment of 5‐(2‐aryl‐2‐oxoethyl) derivatives 2 afforded 2,4‐bis(2‐aryl‐2‐oxoethylidene)cyclobutane‐1,3‐diones 6 along with each of the preceding products. Treatment of the respective (E,Z)‐5‐(2‐aryl‐2‐oxoethylidene) analogues 3b and 3c with CN? gave 4b and 4c and 2‐(arylcarbonyl)‐2‐methoxy‐4‐oxopentanedinitriles 7b and 7c , in addition to 3,6‐bis[2‐(4‐chlorophenyl)‐1‐methoxy‐2‐oxoethylidene]‐1,4‐dithiane‐2,5‐dione 8c , which has been generated from 3c . Reactions of 3c or 3d with NCO? provided 5c or 5d , together with 8c or 8d as pure isomers. In the formation of the MeO products 7 and 8 , the solvent (MeOH) has participated. Structures of these products are based on microanalytical and spectroscopic data. Rationalizations for the above transformations are given.  相似文献   

8.
The N‐acyl thiourea complexes bis[N,N‐diethyl‐N′‐(p‐nitrobenzoyl)‐thioureato]copper(II) ( 1a,1b ) and bis(N,N‐diphenyl‐N′‐benzoylthioureato)copper(II) ( 2a,2b ) crystallize in each case in two modifications. X‐ray structural analysis shows that 1a and 1b are cis‐trans isomers. This is very unusual for N‐acyl thioureato complexes because with exception of one platinum(II) complex up to now only cis complexes have been found. In contrast X‐ray structural analysis of both forms 2a and 2b of the other complex shows no cis‐trans pair. Both modifications are cis complexes. In solution both isomers of the copper(II) complexes are observable by EPR spectroscopy.  相似文献   

9.
Three types of compounds were synthesized from carbendazim ( 1 ), a benzimidazole derivative (Scheme 1 ). They included a group of esters at N1 prepared by treating carbendazim with isocyanates bearing ester groups ( 2a , 2b , 2c ), carboxyalkyl‐1,2,3,4‐tetrahydro‐s‐triazino[1,2‐a]benzimidazole‐2,4‐dione esters ( 3a and 3b , 3d and 3c derived from 3a . The antitumor potencies of the N1 esters were in the range of 7 to 40 μM, which compares favorably with carbendazim, but their water solubilities were low. The s‐triazine derivatives showed activity against pancreatic tumor cells, and one of them ( 3b ) was active in mice, but they were not effective against other tumor types. Treatment of carbendazim with 3‐bromopropionyl chloride produced 1‐methoxycarbonyl‐4‐oxo‐1,2,3,4‐tetrahydropyrimido[1,2‐a]benzimidazole ( 4 ), which gave 1‐(3‐aminopropionyl)benzimidazole 2‐methylcarbamates, substituted on the amino nitrogen ( 5a , 5b , and 5d ), when treated with amines. These products showed some antitumor activity in cell cultures, and an ethoxy derivative ( 5c ), obtained by treating 1‐methoxycarbonyl‐4‐oxo‐1,2,3,4‐tetrahydropyrimido[1,2‐a]benzimidazole with sodium ethoxide, was active in the 67–150 μM range. Some of the new compounds had good water solubility. Carbendazim kills tumor cells by inhibiting tubulin; however, s‐triazine 3b , which differs from it in size and functional groups, does not act by this mechanism.  相似文献   

10.
The reactions of α‐ferrocenylmethylidene‐β‐oxocarboxylates ( 1 , 2 , 3a , and 3b ) with N‐methyl‐ and N‐(2‐hydroxyethyl)hydrazines ( 5a , 5b ) afford ethyl 1‐alkyl‐5‐aryl(methyl)‐3‐ferrocenylpyrazole‐4‐carboxylates ( 6a , 6b , 6c , 6d , 6e ) (~50%) and N‐alkylhydrazine insertion products, viz., ethyl (N′‐acyl‐N′‐alkylhydrazino)‐3‐ferrocenylpropanoates ( 7a , 7b , 7c , 7d , 7e ) (~20%) and 1‐acyl‐2‐(N′‐alkyl‐N′‐ethoxycarbonylhydrazino)‐2‐ferrocenylethanes ( 8a , 8b , 8c , 8d , 8e ) (~10%). The structures of the compounds obtained were established based on the spectroscopic data and X‐ray diffraction analysis (for pyrazoles 6a and 6b ). J. Heterocyclic Chem., (2011).  相似文献   

11.
A series of N‐alkylphthalazinone were synthesized by the reaction of phthalazin‐1(2H)‐one derivatives 1a , 1b , 1c with alkylating agents namely, propargyl, allyl bromide, epichlorohydrin, 1,3‐dichloro‐2‐propanol, 4‐bromobutylacetate, and 1‐(bromomethoxy)ethyl acetate to give the corresponding N‐alkylphthalazinone 2a , 2b , 2c , 3a , 3b , 3c , 5a , 5b , 5c , 6a , 6b , 6c , 7a , 7b , 7c , and 9a , 9b , 9c . Alkylation of phthalazin‐1(2H)‐thione to give a series from S‐alkylphthalazine 12 , 13 , 14 and thioglycosides 15 and 17 was performed. Deprotection of compounds 7a , 7b , 7c , 9a , 9b , 9c , 15 , and 17 resulted in the formation of the corresponding products 8a , 8b , 8c , 10a , 10b , 10c , 16 , and 18 . The structure of newly synthesized compounds was assigned by IR, 1H, 13C NMR, and elemental analysis. Some of these compounds were screened for antiviral and antimicrobial activity.  相似文献   

12.
Two series of 7‐arylazo‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)pyrazolo[5,1‐c][1,2,4]triazol‐6(5H)‐ones 4 and 7‐arylhydrazono‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines 7 were prepared via reactions of 4‐amino‐3‐mercapto‐5‐(2‐methyl‐1H‐indol‐3‐yl)‐1,2,4‐triazole 1 with ethyl arylhydrazono‐chloroacetate 2 and N‐aryl‐2‐oxoalkanehydrazonoyl halides 5 , respectively. A possible mechanism is proposed to account for the formation of the products. The biological activity of some of these products was also evaluated.  相似文献   

13.
The reaction of 1,3‐diphenyl‐2‐(phenylimino)‐3‐(ylidenemethyl‐acetate)‐1‐propanone (5) with trisdialkylaminophosphines (6a,b) in refluxing toluene afforded the new oxazaphospholene products (7a–b) . On the other hand, the cyclic azaphospholene adducts 8a–b were isolated from the reaction of 5 with 6a,b without solvent. Trialkyl phosphites 1b–c react with compound 5 to give the respective dialkyl phosphate products (9a,b) . Moreover, trisdialkylaminophosphines (6a,b) react with 2a and 2b to give the dipolar adducts 10a,b and the phosphonate products 11a,b, respectively. Possible reaction mechanisms are considered, and the structural assignments are based on compatible analytical and spectroscopic results. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:511–517, 2001  相似文献   

14.
Nucleophilic substitution reactions of N(3)P(3)Cl(4)[O(CH(2))(2)NCH(3)], (1) with the sodium salts of mono- and di-functional alcohols [methanol (2), phenol (3), tetraethyleneglycol (4) and 1,3-propanediol (5)] were carried out in order to investigate a possible directing effect of the spiro O-moiety on the formation of mono-substituted (2a, 3a), non-geminal di-substituted (2c, 3c) and ansa (4a, 5a) derivatives. Compounds isolated from the reactions were characterized by elemental analysis, mass spectrometry, (1)H and (31)P NMR spectroscopy and X-ray crystallographic analysis showed that the substituent OR in compounds (2a, 3a and 2c, 3c) and the ansa-ring in compounds (4a, 5a) formed cis to the P-O moiety of the exocyclic [O(CH(2))(2)NCH(3)] spiro ring. The formation of products (2a-d, 3a-d, 4a, 5a and 5b) was quantified from the (31)P NMR spectra of the reaction mixtures, which showed an overwhelming preference for derivatives (2a, 3a, 2c, 3c, 4a, 5a) with the substituent cis to the P-O moiety of the exocyclic spiro ring (2a, 3a, 2c, 3c, 4a, 5a), except for reaction with 1,3-propanediol where the six-membered ring spiro derivative (5b) was about three times more abundant than the eight-membered ring ansa-derivative (5a). Overwhelming formation of products with the substituent cis to the exocyclic P-O moiety is proof that the cation-assisted mechanism is responsible for the stereo-selectivity in the reactions with alkoxides.  相似文献   

15.
The coordination polymers [CuBr(1, 7‐phen‐κN7)] ( 1a ), [CuI(1, 7‐phen)] ( 2a ) and [(CuI)2(1, 7‐phen‐κN7)] ( 2b ) may be prepared by treatment of the appropriate copper(I) halide with 1, 7‐phenanthroline (1, 7‐phen) in acetonitrile. 1a exhibits staircase CuBr double chains, 2a novel quadruple CuI chains. Their thermal properties were investigated by DTA‐TG and temperature resolved powder X‐ray diffraction. On heating, both 1:1 compounds decompose to 2:1 polymers and then finally to CuBr or CuI. With 4, 7‐phenanthroline (4, 7‐phen), CuBr affords both 1:1 and 2:1 complexes ( 5a , 5b ), CuI 1:1 , 2:1 and 3:1 complexes( 6a , 6b , 6c ) in acetonitrile at 20 °C. 5a and 6a display lamellar coordination networks, with the former containing zigzag CuBr single chains, the latter 4‐membered (CuI)2 rings. A second 2:1 complex [(CuI)2(4, 7‐phen‐μ‐N4, N7)] ( 6b ′) with staircase CuI double chains can be obtained by reacting CuI with 4, 7‐phen in a sealed glass tube at 110 °C. Both 5a and 6a exhibit thermal decomposition pathways of the general type 1:1 → 2:1 → 3:1 → CuX, and novel CuX triple chains are proposed for the isostructural 3:1 polymers 5c and 6c . X‐ray structures are reported for complexes 1a , 2b , [(CuCN)3(CH3CN)(1, 7‐phen‐μ‐N1, N7)] ( 3c· CH3CN), [CuSCN(1, 7‐phen‐κN7)] ( 4a ), 5a , 6a and [CuCN(4, 7‐phen‐μ‐N4, N7)] ( 7a ).  相似文献   

16.
A Reaction involving chloroformamidinium salts (TCFH 1a , BTCFH 1b , DmCFH 1c , DmPCFH 1d , BPCFH 1e ) and 2‐aminophenol 9a , benzene‐1,2‐diamine 9b , and 2‐aminothiophenol 9c afforded 2‐aminobenzoxazole 13 , 2‐aminobenzoimidazole 14 , and 2‐aminobenzothiazole 15 derivatives, respectively as major products, due to the in situ heterocyclization with dimethylamine acting as the better leaving group. Attempts for preparation of 13‐15 from the reaction of N,N‐dimethyl carbomyl chloride 16 with 2‐aminophenol 9a , benzene‐1,2‐diamine 9b , and 2‐aminothiophenol 9c were unsuccessful, and gave the unexpected products benzoxazol‐2‐ol 18a , benzoimidazol‐2‐one 18b , and S‐(2‐amino‐phenyl) N,N‐dimethylthiocarbamate 19 respectively. On the other hand reaction of chloroformamidinium salts 1a‐e with 3‐benzyl‐2‐hydrazinoquinoxaline 3 and 1‐hydrazinophthalazine hydrochloride 4 in the presence of triethylamine as a base, afforded the [1,2,4]triazolo derivatives 6 and 7 respectively in good yield and purity. These triazole derivatives were formed due to the strong tendency towards heterocyclization and substitution of dimethylamine group as a better leaving group.  相似文献   

17.
Novel 6‐(1,2,3‐triazol‐4‐yl)‐5‐[(2‐(thiazol‐2‐yl)hydrazono)methyl]imidazo[2,1‐b ]thiazoles 7 , 9a , 9b , 9c , 9d , and 11 were prepared by reaction of thiosemicarbazone 5a , 5b with either hydrazonoyl chloride 6 , phenacylbromides 8 or 2‐bromo‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)ethanone 10 respectively. The new products were tested for their antimicrobial activities using 96‐well micro‐plate assay, and compound 7 showed excellent antibacterial activities compared with Vancomycine (reference drugs), while compounds 5b and 9c exhibited good results against yeast. The minimum inhibitory concentration (MIC) was determined, and compound 7 showed the lowest MIC against Gram positive bacteria while compound 5b showed the lowest MIC against yeast.  相似文献   

18.
The reaction of tertiary amine functionalized phosphines with aromatic and aliphatic aldehydes gives insertion of carbon fragments into the PIII? N bonds or PIII? N bond cleavage. The reaction of bis(diphenylphosphino) amines, 1a – 1c , with two equiv. of aldehydes in toluene afforded the PIII? N bond inserted products, 2a – 4a, 4b – 6b , and 3c – 5c , in moderate‐to‐good yield. The products were characterized by IR, 1H‐ and 31P‐NMR spectroscopy and elemental analysis.  相似文献   

19.
[(p‐Sulfonamidophenyl)azo]malononitrile ( 1a,b ) reacted with N‐cyclohexanemethylidene‐2‐cyanoacetohydrazide, N'‐arylmethylidene‐2‐cyanoacetohydrazide ( 3a‐c ), S‐methylthiourea and hydrazine hydrate to afford [1,2,4]triazolo‐[1,5‐a]pyridinone derivatives ( 2a,b ) & ( 4a‐c ), substituted pyrimidines 5a,b and 6a,b. The corresponding pyridazinones 7a,b were synthesized from the reaction of 1c,d with ethyl cyanoacetate. Compound 7a,b reacted with elemental sulfur to yield 8a,b . Compound 6a underwent cycloaddition with α‐cinnamonitrile 9a‐e to yield 11a‐c, 14 and 15 . Also, compound 6a reacted with β‐ketoester and 1,3‐diketones to give 16, 17 and 18 .  相似文献   

20.
Reactions of N,N′‐disubstituted hydrazine‐1,2‐carbothioamides 8a‐c and substituted N,N″‐ethane‐1,2‐diylbis(thioureas) 9a‐c with 2,3,5,6‐tetrachloro‐1,4‐benzoquinone (chloranil, 10a ) and 2,3,5,6‐tetrabromo‐1,4‐benzoquinone (bromanil, 10b ) to form N,N′‐disubstituted 1,3,4‐thiadiazole‐2,5‐diamines 11a‐c , substituted 3‐amino‐6,7‐dichloro‐2,3‐dihydro‐1H‐4,2,1‐benzothiadiazine‐5,8‐diones 12a‐c , 2,3,7,8‐tetrahalothianthrene‐1,4,6,9‐tetrones 13a,b , substituted 5,6,8‐trihalo‐7‐oxo‐3,7‐dihydroquinoxaline‐2H‐carbothioamides 14a‐c, 15a‐c and 7‐substituted imino‐1,3,6‐thiadiazepane‐2‐thiones 16a‐c are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号