首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A series of new 1,3,4‐oxadiazole/thiadiazole and 1,2,4‐triazole derivatives have been synthesized starting from 2‐aryl‐4‐methylthiazol‐5‐carbohydrazides and isonicotinic acid hydrazide. All the newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectrometry. The synthesized compounds were screened for their antibacterial and antifungal activity, assessed as growth inhibition diameter. Some of them showed good antibacterial activity against gram positive Staphylococcus aureus, while the antibacterial activity against Listeria monocytogenes, Escherichia coli, and Salmonella typhymurium and antifungal activity against Candida albicans was modest. None of the tested compounds showed inhibitory activity against gram positive bacteria Enterococcus faecalis and Bacillus cereus and against gram negative bacteria Pseudomonas aeruginosa.  相似文献   

2.
A series of new triazole derivatives of quinazolin‐4(3H)‐one and new oxadiazole derivatives of quinazolin‐4(3H)‐one were synthesized. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR and mass spectral data. All the newly synthesized compounds were screened for antibacterial activity against Staphylococcus aureus, Bacillus subtilis (gram‐positive bacteria), Escherichia coli, Pseudomonas aeruginosa (gram‐negative bacteria), and antifungal activity was carried out against Candida albicans and Aspergillus niger.  相似文献   

3.
In view of developing novel bioactive compounds, a series of 2‐(5‐[2‐methyl‐6‐arylpyridin‐3‐yl]‐1,3,4‐oxadiazol‐2‐ylthio)‐1‐arylethanones (6a–n) were designed and synthesized in good yield. Novel compounds were evaluated for their antibacterial and anti‐inflammatory activities. All synthesized compounds were screened for their antibacterial activity against Staphylococcus aureus, Bascillus subtilis, Eschericia coli, and Pseudomonas aeruginosa strains. Compounds 6a , 6b , 6c , 6h , and 6i displayed the highest antibacterial activity with minimal inhibitory concentration (MIC) values ranging from 6.25–12.5 μg/mL in comparison with the standard Ciprofloxacin. The results of anti‐inflammatory activity of carrageenan‐induced footpad edema assay indicated that tested compounds exhibited remarkable anti‐inflammatory activity with percentage of inhibition of 63.9–70.1% (potency 96.8–106.20% of indomethacin activity) after 3 hr. Particularly, 6c – e and 6j – l were found to be excellent inhibitors of inflammation, with potential higher than that of the standard, Indomethacin.  相似文献   

4.
In an attempt to synthesize antibacterial agents effective against gram‐positive and gram‐negative bacteria, the efficient synthesis of novel bis‐azetidinones ( 3a–j ) has been established. Thus, cycloaddition reaction of substituted bis‐imines with chloroacetylchloride under microwave irradiation in the presence of zeolite yielded bis‐azetidinones ( 3a–j ). Structures of the synthesized compounds have been elucidated on the basis of their elemental analysis and spectral data (IR, 1H‐NMR, 13C‐NMR, and mass spectra). The synthesized bis‐azetidinones were screened for their antibacterial activity against five microorganisms: Bacillus subtilis, Proteus vulgaris, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. They were found to exhibit good to moderate antibacterial activity.  相似文献   

5.
A series of 2‐(2‐(2‐chlorophenyl)quinoline‐4‐carbonyl)‐N‐substituted hydrazinecarbothioamide derivatives were synthesized by facile and efficient conventional method. The structures of the compounds were elucidated with the aid of an elemental analysis, IR, ESI‐MS, 1H‐NMR, and 13C‐NMR spectral data. The synthesized compounds were evaluated for their in vitro antibacterial, antifungal, antimalarial, and antituberculosis activity against standard drugs. The bacterial studies were determined against gram‐positive and negative bacteria. These compounds were found to a broad spectrum of activity against the screened bacteria, but poor activity was observed against Pseudomonas aeruginosa and Escherichia coli. Compounds 8d , 8f , 8i , 8l , and 8n showed the potent activity against Staphylococcus aureus. Compounds 8d , 8g , 8k , 8l , and 8q show the potent activity against antimalarial as compared with the standard drugs Chloroquine, Quinine and compounds 8h , 8n , and 8o shows mild activity against H37Rv strain. Molecular docking revealed that synthesized derivatives and target proteins were actively involved in a binding pattern and had a significant corelation with biological activity. We have also performed a molecular dynamics and ADME‐Tox parameters for the synthesized compounds.  相似文献   

6.
The title compounds, 7‐aryl‐5,6‐dihydro‐14‐aza[1]benzopyrano[3,4‐b]phenanthren‐8H‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been synthesized by reacting various 4‐hydroxy coumarins 1a , 1b , 1c with 2‐arylidene‐1‐tetralones 2a , 2b , 2c , 2d in the presence of ammonium acetate and acetic acid under Krohnke's reaction condition. The structures of all the synthesized compounds were supported by analytical, IR, 1H‐NMR, and 13C‐NMR data. All the synthesized compounds 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l have been screened for their antibacterial activities against Escherichia coli (Gram ?ve bacteria), Bacillus subtilis (Gram +ve bacteria), and antifungal activity against Candida albicans (Fungi). J. Heterocyclic Chem., (2011).  相似文献   

7.
A novel series of 1,4‐disubstituted‐1,2,3‐triazole derivatives 3a – l and 5a – i were one‐pot synthesized via CuAAC‐alkyne click chemistry and evaluated for their antibacterial activity against four organisms and screened for their anticancer activity against human colon cancer cell line HT‐29 and human lung cancer cell line HTB‐29. These hybrid molecules structure elucidation has been performed by IR, 1H‐NMR, 13C‐NMR, and mass spectral analysis. Synthesized nonsteroidal anti‐inflammatory drugs‐triazoles evaluated for their antibacterial activities against bacterial microorganisms Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumonia. Final compounds 3i , 3c , and 5b showed magnificent broad spectrum activity against P. aeruginosa, K. pneumonia, E. coli, and S. aureus with zone of inhibition values of 20, 15, 17, and 16 mm, respectively. Among the series of compound, 3j showed the best antibacterial activity against all the strains. Further, the compounds 3i and 5a were more cytotoxic than cisplatin against all tested two human cancer cell lines, with 50.8%, and 52.3% and 73.4% and 75.3% of growth, respectively. The synthesized compounds were tested for kinase inhibitory activity against glycogen synthase kinase‐3 protein kinases, in addition, for cytotoxic activity against two different human cancer cell lines.  相似文献   

8.
1,3‐Dipolar cycloaddition reactions of N‐cyclohexyl maleimide ( 1 ) with azomethine N‐oxide ( 2 ) have afforded novel isoxazolidine ( 3 ) in excellent yield. Their structures have been characterized from their IR, 1H‐NMR, 13C‐NMR, 1H,1H‐COSY, MS(ESI), and elemental analysis techniques. In vitro antibacterial activity of the synthesized compounds were investigated against a representative panel of pathogenic strains specifically two Gram‐positive bacteria (Staphylococcus aureus and Streptococcus pyogenes ) and two Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ) using agar‐well diffusion assay. Some of the compounds ( 3a , 3k , 3n , and 3o ) exhibited promising antibacterial activities. All the synthesized compounds have also been screened for their antioxidant activities and were found to be significantly active.  相似文献   

9.
A total of 17 new N‐substituted derivatives ( 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k and 3b , 3c , 3d , 3e , 3f , 3g , 3h ) of 5‐((2‐phenylthiazol‐4‐yl)methylene) thiazolidine‐2,4‐dione ( 2a ) and 5‐(2,6‐dichloro‐ benzylidene)thiazolidine‐2,4‐dione ( 3a ) were synthesized. The structural elucidation of the newly synthesized compounds was based on elemental analysis and spectroscopic data (MS, 1H NMR, 13C NMR), and their antimicrobial activities were assessed in vitro against several strains of Gram‐positive and Gram‐negative bacteria and one fungal strain (Candida albicans) as growth inhibition diameter. Some of them showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus, Bacillus cereus, and Enterococcus fecalis bacterial strains, whereas almost all the compounds were inactive against Listeria monocytogenes. All of the synthesized compounds showed moderate to very good activity against C. albicans.  相似文献   

10.
A straightforward method has been developed for the synthesis of 1,2,4‐triazol‐3‐one 3 and 1,2,4‐triazoles 6a , 6b , 6c , 6d starting from N1‐substituted‐N1‐tosylhydrazonates 2 and hydrazine monohydrate. This methodology affords a number of 1,2,4‐triazol‐3‐one 3 and 1,2,4‐triazoles 6a , 6b , 6c , 6d in reasonable yields. The structures of all new compounds were elucidated using infrared, 1H and 13C NMR, high‐resolution mass spectrometry, elemental analysis, and the X‐ray crystallography (for compounds 3 and 6a ). Some of the newly synthesized compounds were screened for their antibacterial activity.  相似文献   

11.
A library of novel quinazoline scaffolds endowed with semicarbazide/oxadiazole thiol motif synthesized via an efficient and sustainable copper catalyzed C–N/C–S coupling is reported, making the presented methodology extremely valuable from economic and environmental point of view. Among the all synthesized compounds screened for in vitro antibacterial, antifungal, and anti‐TB activity, 7b , 7c , 7f , 9b , 9c , 9i , and 9j showed excellent inhibitory effect on particular strain of bacteria, fungi, and M. tuberculosis H37Rv as well. All the newly synthesized derivatives were well characterized by their IR, 1H NMR, 13C NMR, mass spectroscopy as well as elemental analysis.  相似文献   

12.
Imidazo[4,5‐c ]pyrazole derivatives ( 3a–f , 4a–f , and 5a–f ) were efficiently synthesized by one‐pot three‐component reactions using CeO2–MgO as the catalyst. The synthesized compounds were characterized by IR, 1H NMR, 13C NMR, and mass spectroscopic analyses. The in vitro antimicrobial activity of the synthesized compounds against various bacterial and fungal strains was screened. Compound 3b was highly active [minimum inhibitory concentration (MIC): 0.5 μg/mL] against Gram‐positive Staphylococcus aureus , and compounds 3b , 3f , 4d , and 4e were highly active (MIC: 0.5, 2, 2, and 0.5 μg/mL, respectively) against Gram‐negative Pseudomonas aeruginosa and Klebsiella pneumoniae , relative to standard ciprofloxacin in the antibacterial activity screening. Compounds 3b and 4f were highly active (MIC: 4 and 0.5 μg/mL, respectively) against Aspergillus fumigatus and Microsporum audouinii in the antifungal activity screening compared with the clotrimazole standard.  相似文献   

13.
Because of the great biological importance of substituted indole derivatives, in the present study, a series of pyrazolylindole, thiazolylindole, and pyrimidinylindole derivatives have been synthesized with good yield. The precursor indolyl chalcone 2a – d was prepared by reaction of 3‐chloro‐1H‐indole‐2‐carbaldehyde 1 with different ketones. Then, compounds 3b – d , 4 , and 5a – d have been synthesized by the reaction of chalcones 2a – d with hydrazine, phenylhydrazine, and thiosemicarbazide. When the chalcone derivative 2b subjected to react with hydroxylamine hydrochloride gave isoxazolylindole derivative 6b . N‐thiazolidine pyrazolyl indole 7 was obtained by reacting compound 5a with ethyl chloroacetate. On the other hand, when chalcone derivative 2b allowed to react with urea and thiourea gave the corresponding pyrimidinylindole derivatives 8 and 9 . Finally, when chalcone derivative 2b reacted with ethyl cyanoacetate or malononitrile gave pyridinylindole derivatives 10 and 11 . The structures of the all synthesized compounds were elucidated on the basis of spectral analysis infrared, NMR, and mass spectroscopy. Some of the synthesized compounds were screened for their antimicrobial and anti‐inflammatory activity. Compound 4b was the highest antibacterial activity against all strains of bacteria with values higher than those of the corresponding reference antibiotics (ciprofloxacin and levofoxacin, respectively) and almost the same as (gemifloxacin, moxifloxacin, clindamycin, gentamycin, and streptomycin). Compounds 4 , 5 , 6 , and 7 showed high anti‐inflammatory activity compared with the standard drug indomethacin.  相似文献   

14.
A series of multifunctional 2‐amino‐5‐cyano‐4‐[(2‐aryl)‐1H‐indol‐3‐yl]‐6‐hydroxypyrimidines ( 4a , 4b , 4c , 4d , 4e , 4f ) was synthesized by multicomponent reaction of 3‐formylindole ( 1 ), cyanoethylacetate ( 2 ), and guanidine hydrochloride ( 3 ) with NaOH by using green chemical techniques, viz. microwave irradiation and grindstone technology. The same reactants when refluxed in ethanol also gave titled compounds ( 4a , 4b , 4c , 4d , 4e , 4f ). Compared with conventional procedure, the reaction can be carried out under milder conditions, requiring a shorter reaction time and giving higher yields following the green chemistry methodology. All the synthesized compounds have been characterized on the basis of elemental analyses and spectral data (IR, 1H NMR, 13C NMR, and mass). All synthesized compounds were also evaluated for their antimicrobial activity against nine pathogenic bacteria, antifungal activity against Rhizopus stolonifer, Aspergillus flavus, and Fusarium oxysporum and antibacterial activity against Escherichia coli and Pseudomonas aeruginosa at different concentrations. Most of the compounds showed mild to moderate activity.  相似文献   

15.
Novel steroidal (6R)‐spiro‐1,3,4‐thiadiazoline derivatives were synthesized by the cyclization of steroidal thiosemicarbazones with acetic anhydride, screened in vitro against antibacterial activity using disc‐diffusion method and the minimum inhibitory concentration. The results showed that steroidal thiadiazoline derivatives exhibited better antibacterial activity than the steroidal thiosemicarbazone derivatives. Chloro and acetoxy substituents on the 3β‐position of the steroidal thiadiazoline ring increased the antibacterial activity. Among all the compounds, compound 7 and 8 were found better inhibitors of both types of bacteria (Gram‐positive and Gram‐negative) as compared to the respective drug amoxicillin. All the synthesized compounds were well characterized by spectroscopic methods such as IR, 1H‐NMR, 13C‐NMR mass, and elemental analysis and their stereochemistry was also discussed.  相似文献   

16.
A new series of 2‐(p‐tolyloxy)‐3‐(5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl)quinoline were synthesized from oxidative cyclization of N′‐((2‐(p‐tolyloxy)quinoline‐3‐yl)methylene)isonicotinohydrazide in DMSO/I2 at reflux condition for 3–4 h. The structures of the new compounds were confirmed by elemental analyses as well as IR, 1H‐NMR, and mass spectral data. All the synthesized compounds were screened for their antibacterial activities against various bacterial strains. Several of these compounds showed potential antibacterial activity. J. Heterocyclic Chem., (2011).  相似文献   

17.
A series of new 1‐substituted 3, 5‐diarylpyrazolines ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) were synthesized in good yield by both conventional and microwave‐assisted synthesis from α, β‐ unsaturated ketones ( 6 , 7 , 8 , 9 ) in n‐butanol and benzothiazole hydrazines ( 2 , 3 , 4 , 5 ). All the new compounds were characterized by IR, NMR, and mass spectral data. The synthesized compounds ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) were evaluated for antibacterial and anthelmintic activities. The compounds showed potent anthelmintic activity against earthworm species (Eudrilus eugeniae) and moderate antibacterial activity against bacterial strains such as Gram positive bacteria, Enterococcus faecalis, Staphylococcus aureus, and Bacillus subtilis, and Gram negative bacteria, Escherichia coli and Proteus mirabilis.  相似文献   

18.
Pyrimidine and thienopyrimidine derivatives play a very important role in organic chemistry because of their wide applications as bioactive compounds with multiple biological activities. However, a literature survey revealed that the merger of different groups in the thieno[2,3‐d]pyrimidine heterocyclic ring enhances its antibacterial, antifungal and anti‐inflammatory activities. This encouraged us to prepare a new series of thieno[2,3‐d]pyrimidine heterocyclic compounds and to test them as antimicrobial and anti‐inflammatory agents. These compounds have shown remarkable activity toward fungi, bacteria, and inflammation. Thus, these compounds have been prepared by the chloroacylation of 5‐amino‐4‐phenyl‐2‐(p‐tolylamino)thieno[2,3‐d] pyrimidine‐6‐carboxamide ( 4 ) using chloroacetyl chloride under neat condition to afford the target compound ( 6 ), which was used as precursor for the synthesis of a number of bioactive compounds. Thus reaction of the chloromethylpyrimidine derivative ( 6 ) with triphenylphosphine in dry benzene gave the corresponding ((4‐oxo‐9‐phenyl‐7‐(p‐tolylamino)‐3,4‐dihydropyrimido[4′,5′:4,5]thieno[2,3‐d]pyrimidin‐2‐yl)methyl) triphenylphosphonium chloride ( 7 ). Compounds 8a – 8c and 9a – 9c were obtained by the reaction of 7 with some selected aromatic aldehydes and ketones in methanol and sodium methoxide under Wittig reaction condition. The structures of the all new synthesized compounds were established on the basis of their analytical and spectral data (IR, 1H NMR, 13C NMR, and MS).  相似文献   

19.
Some new N-alkoxycarbonyl-N″-benzoyl-benzamidrazones (p-toluamidrazones) 3a-3d, and 1,3,5-trisubstituted 1,2,4-triazole 4a-4h derivatives by starting from N-benzoylbenzimidates or N-benzoyl-p-toluimidates. The structures of compounds 3 and 4 were established on the basis of elemental analyses, IR, ^1H NMR, ^13C NMR and UV data. Antimicrobial experiments of the compounds performed by using agar-well diffusion and broth microdilution methods revealed that only compounds 3a-3d, 4a and 4b showed inhibitory effect only on Candida albicans ATCC 60193. However, compound 4b had also specific antibacterial activity against Staphylococcus aureus ATCC 25923. The other compounds showed neither antifungal nor antibacterial activities. Compounds 3a, 4a and 4b have been screened on three human tumor cell lines, breast cancer (MCF7), non small cell lung cancer (NCI-H460), and CNS cancer (SF-268) at the National Cancer Institute (NCI), USA, which were found to exhibit low antiproliferative activity.  相似文献   

20.
A series of new 4,6‐diaryl‐4,5‐dihydro‐3‐hydroxy‐2H‐indazoles 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j , 5k were synthesized by the cyclization of ethyl 2‐oxo‐4,6‐diarylcyclohex‐3‐ene carboxylates 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j , 4k . The compounds were characterized by IR, 1H NMR, 13C NMR, 2D NMR, and elemental analysis. The synthesized compounds were evaluated for in vitro antibacterial and antifungal activities against Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger, Aspergillus flavus, and Rhizopus sp. Most of the compounds exhibited good activity against the tested organisms. J. Heterocyclic Chem.,, (2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号