首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Biginelli‐type compounds, 5‐unsubstituted 3,4‐dihydropyrimdin‐2(1H)‐ones were synthesized by a one‐pot three‐component condensation of aromatic aldehydes, aromatic ketones and urea in the presence of SnCl4 · 5H2O under solvent‐free conditions. The advantages of this method are short reaction time (4–10 min), excellent yields (74–97%), inexpensive catalyst and solvent‐free conditions. A plausible mechanism was proposed.  相似文献   

2.
A practical and efficient procedure for the one‐pot multicomponent couping of aryl aldehydes, 2‐naphthol and cyclic 1,3‐dicarbonyl compounds using perchloric acid adsorbed on silica gel (HClO4‐SiO2) as a highly efficient, inexpensive, convenient, reusable heterogeneous catalyst under solvent‐free conditions has been developed. Various biologically important 12‐aryl‐8,9,10,12‐tetrahydrobenzo[a]xanthen‐11‐one derivatives have been efficiently synthesized in high to excellent yields. The present approach offers several advantages such as shorter reaction times, simple work‐up, excellent yields, low cost, and mild reaction conditions. Furthermore, the catalyst can be recovered simply and reused without appreciable loss of its catalytic activity.  相似文献   

3.
Some novel 12‐aryl‐12H‐benzo[i][1,3]‐dioxolo[4,5‐b]xanthene‐6,11‐diones can be rapidly and efficiently synthesized in excellent yields by condensing a variety of aldehydes with 3,4‐methylenedioxyphenol and 2‐hydroxy‐1,4‐naphthoquinone in the presence of a catalytic amount of silica sulfuric acid under solvent‐free conditions. The simple experimental procedure, solvent‐free reaction conditions, utilization of an inexpensive and readily available catalyst, short period of conversion, and excellent yields are the advantages of the present method. Furthermore, the catalyst can be recycled and reused three times without significant loss of activity. The structures of the novel compounds are confirmed by IR, 1H‐NMR, 13C‐NMR, MS, and elemental analysis. J. Heterocyclic Chem., 2011.  相似文献   

4.
2H‐Pyridazino[1,2‐a]indazole‐1,6,9(11H)‐triones were synthesized through one‐pot, three‐component condesation of aldehydes, maleic hydrazide, and dimedone using a green and inexpensive Brönsted acidic ionic liquid 1‐methyl‐2‐pyrrolidinone hydrosulfate ([Hnmp]HSO4) as catalyst under solvent‐free conditions. The method provided several advantages such as milder conditions, shorter reaction time, high yields, and environmentally benign procedure.  相似文献   

5.
2‐Amino‐4‐(4‐substitutedphenyl)‐5‐oxo‐4H,5H‐pyrano[2,3‐d]pyrido[1,2‐a]pyrimidine‐3‐carbonitrile‐derivatives 2–12 were synthesized via multi‐component condensation reactions of different aromatic aldehydes, 3H‐pyrido[1,2‐a]pyrimidine‐2,4‐dione 1 , and malononitrile by using ZnO nanoparticles as green chemistry, environmentally friendly catalyst under solvent‐free conditions. The present work creates a variety of biologically active heterocyclic compounds in excellent yield and a short time. The structures of all synthesized compounds were elucidated with the elemental analyses, IR, 1H NMR, and mass spectral data.  相似文献   

6.
α‐Amino nitriles are synthesized by the three‐component coupling reaction of aldehydes, amines and trimethylsilyl cyanide using FeCl3 as a solid acid catalyst, under solvent‐free conditions in good yields. The catalyst was recovered by simple filtration and was recycled in subsequent reactions.  相似文献   

7.
A cost‐effective and eco‐friendly synthesis of benzopyrano[2,3‐d ]pyrimidine derivatives has been developed via three component one‐pot tandem approach by condensing different salicylaldehydes and secondary amines with malononitrile in the presence of TiO2–SiO2 catalyst at 80°C under solvent‐free conditions. Mild experimental conditions, reusability of the catalyst, and cost effectiveness are the merits of this procedure. Compounds 4g , 4h , and 4i bearing 2‐OMe group on the hydroxyphenyl group linked to the central carbon present in between the two nitrogen atoms of the pyrimidine ring were found to exhibit good antioxidant activity while other compounds have moderate antioxidant activity.  相似文献   

8.
A novel Ni‐based metal–organic framework (Ni‐MOF) with a Schiff base ligand as an organic linker, Ni3(bdda)2(OAc)2?6H2O (H2bdda = 4,4′‐[benzene‐1,4‐diylbis(methylylidenenitrilo)]dibenzoic acid), was synthesized and characterized using powder X‐ray powder diffraction, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, elemental analysis and Fourier transform infrared spectroscopy. The synthesized Ni‐MOF exhibited a high catalytic activity in benzyl alcohol oxidation using tert‐butyl hydroperoxide under solvent‐free conditions. Also, the efficiency of the catalyst was investigated in the cascade reaction of oxidation–Knoevanagel condensation under mild conditions. The Ni‐MOF catalyst could be recovered and reused four times without significant reduction in its catalytic activity.  相似文献   

9.
Various coumarin‐3‐carboxylic acid (=2‐oxo‐2H‐1‐benzopyran‐3‐carboxylic acid; CcaH) derivatives have been synthesized in good yields using catalytic amounts of SnCl2?2 H2O under solvent‐free conditions. This inexpensive, nontoxic, and readily available catalytic system (10 mol‐%) efficiently catalyzes the Knoevenagel condensation and intramolecular cyclization of various 2‐hydroxybenzaldehydes or acetophenones with Meldrum's acid. High product yields, use of inexpensive and safe catalyst, and solvent‐free conditions display both economic and environmental advantages.  相似文献   

10.
An acid–base bifunctional ionic solid catalyst [PySaIm]3PW was synthesized by the anion exchange of the ionic‐liquid (IL) precursor 1‐(2‐salicylaldimine)pyridinium bromide ([PySaIm]Br) with the Keggin‐structured sodium phosphotungstate (Na3PW). The catalyst was characterized by FTIR, UV/Vis, XRD, SEM, Brunauer–Emmett–Teller (BET) theory, thermogravimetric analysis, 1H NMR spectroscopy, ESI‐MS, elemental analysis, and melting points. Together with various counterparts, [PySaIm]3PW was evaluated in Knoevenagel condensation under solvent and solvent‐free conditions. The Schiff base structure attached to the IL cation of [PySaIm]3PW involves acidic salicyl hydroxyl and basic imine, and provides a controlled nearby position for the acid–base dual sites. The high melting and insoluble properties of [PySaIm]3PW are relative to the large volume and high valence of PW anions, as well as the intermolecular hydrogen‐bonding networks among inorganic anions and IL cations. The ionic solid catalyst [PySaIm]3PW leads to heterogeneous Knoevenagel condensations. In solvent‐free condensation of benzaldehyde with ethyl cyanoacetate, it exhibits a conversion of 95.8 % and a selectivity of 100 %; the conversion is even much higher than that (78.2 %) with ethanol as a solvent. The solid catalyst has a convenient recoverability with only a slight decrease in conversion following subsequent recyclings. Furthermore, the new catalyst is highly applicable to many substrates of aromatic aldehydes with activated methylene compounds. On the basis of the characterization and reaction results, a unique acid–base cooperative mechanism within a Schiff base structure is proposed and discussed, which thoroughly explains not only the highly efficient catalytic performance of [PySaIm]3PW, but also the lower activities of various control catalysts.  相似文献   

11.
4(3H)‐Quinazolinones were synthesized in high yields by one‐pot three‐component condensation of anthranilic acid, carboxylic acid and aniline in the presence of ionic liquid such as 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate (BMImBF4) as catalyst under solvent free and neutral conditions.  相似文献   

12.
Piperazine‐functionalized nickel ferrite (NiFe2O4) nanoparticles were synthesized as recoverable heterogeneous base catalysts using a routine method. The synthesized materials were characterized using various spectroscopic techniques such as infrared, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray, thermogravimetry analysis, and vibrating sample magnetometry. Catalytic efficiency was investigated in the synthesis of 2‐amino‐4H‐chromene derivatives via a one‐pot three component reaction of aldehyde and malononitrile with β or α‐naphthol/5‐methyle resorcinol under solvent‐free conditions with good to high yields. This method is operationally simple and has several advantages such as good to high yield, short reaction times, solvent‐free conditions, and easy synthesis. Moreover, the catalyst was recovered easily using an external magnet and reused three times without distinctive loss in catalytic activity.  相似文献   

13.
A series of oxocyclopenta[c]chromenes were synthesized via three component reaction of 4‐hydroxycumarin, dialkyl acetylenedicarboxylate, α‐bromo ketones, and triphenylphosphine in the presence of catalytic amount of Fe3O4 magnetic nanoparticles (MNPs) (15 mol%) under solvent‐free conditions at 70°C. Facile, green, easy separation of product and catalyst, and high yields of products are advantages of these reactions.  相似文献   

14.
1,5‐Benzodiazepines are synthesized in good to excellent yields by ytterbium trichloride (YbCl3)–catalyzed condensation of o‐phenylenediamine and ketones under mild and solvent‐free conditions. The Lewis acid–type catalyst, ytterbium trichloride, is found to be water stable and reusable.  相似文献   

15.
In this paper, we report the synthesis of pyrimido[2,1‐a] isoquinoline and pyrimido[1,2‐a]quinoline derivatives in high yields from the reaction of isoquinoline or quinoline, activated acetylenic compounds, and amides in the presence of ZnO nanorods (ZnO‐NRs) as catalyst under solvent‐free conditions at room temperature. ZnO‐NRs show good improvement in the yield of the product and significant reusability. Also, the antioxidant activities of the some of the newly synthesized compounds were carried out by 1,1‐diphenyl‐2‐picrylhydrazyl (PDDH) radical trapping and ferric ion reducing potential tests and compared with those of the synthetic antioxidants 2‐tert‐butylhydroquinone (TBHQ) and butylated hydroxytoluene (BHT). These compounds do not show good DPPH radical scavenging but display good ferric ion reducing power.  相似文献   

16.
Nanoparticles are key focus of research for a wide range of novel applications. As such, ZnFe2O4 magnetic nanoparticles were synthesized hydrothermally and characterized via scanning and transmission electron microscopies, powder X‐ray diffraction, energy‐dispersive X‐ray and infrared spectroscopies, thermogravimetric analysis and magnetic measurements. They were used as a robust catalyst for the synthesis of a series of biologically active multi‐substituted imidazoles using a multicomponent reaction by the reaction of benzil with various aromatic aldehydes, ammonium acetate and aliphatic amines (N,N‐dimethyl‐1,3‐propanediamine and 1‐amino‐2‐propanol) under solvent‐free conditions. The key advantages of this method are shorter reaction times, very high yield and ease of operation. The thermally and chemically stable, benign and economical catalyst was easily recovered using an external magnet and reused in at least five successive runs without an appreciable loss of activity. All of these novel synthesized compounds were characterized from spectral data and their purities were checked using thin‐layer chromatography, giving one spot. Furthermore, the prepared compounds were tested for their anti‐inflammatory activity.  相似文献   

17.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

18.
A simple and convenient procedure for the synthesis of 14‐aryl or alkyl‐14H‐dibenzo[a. j]xanthene derivatives is described through a one‐pot condensation of β‐naphthol with various aryl or alkyl aldehydes in the presence of HBF4‐SiO2 as the catalyst under thermal and solvent‐free conditions.  相似文献   

19.
A novel ionic liquid, 3‐carboxymethyl‐1‐methylimidazolium bisulfate (CMImHSO4), was synthesized and used as a recyclable catalyst for the Biginelli reaction under solvent‐free conditions. High yields of various substituted 3,4‐dihydropyrimidin‐2(1H)‐ones (or thiones) were obtained. The ionic liquid can be recovered and recycled easily without loss of activity.  相似文献   

20.
The Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) were modified with 1,10‐phenanthroline‐5,6‐diol and the relevant Co complex (Fe3O4@Phendiol@Co) synthesized as a nano‐magnetic heterogeneous catalyst to be used for the N ‐formylation of various amines at room temperature under solvent‐free conditions. Also, in order to find the better concept of the catalyst role, the N ‐formylation reaction was carried out by the use of ultrasound irradiation in the absence of the Co nano‐catalyst and the results were compared. The catalyst characterized by different methods such as the elemental analysis (CHN), ICP, FT‐IR, XRD, EDX, SEM, TEM, TG‐DTA, VSM and XPS. In addition, the antioxidant and the antibacterial activities of the Fe3O4@Phendiol@Co nano‐catalyst and its Phendiol ligand were in vitro screened by 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging and disc diffusion methods. Results showed that they possess strong antioxidant activity (IC50; 0.182 ± 0.006 mg/ml) and good antibacterial potential in comparison to standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号