首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学会会志》2017,64(10):1203-1212
Thiazolidin‐4‐one derivative 3 was synthesized by the transformation of chloroacetamide derivative 2 with NH4SCN.The condensation of 3 with p‐anisaldehyde afforded the corresponding arylidene derivative 4 . Also, the alkylation of chloroacetamide derivative 2 with different heterocyclic compounds was investigated. Annulation of 5‐amino‐3‐methylisoxazole ( 1 ) with α‐halocarbonyl compounds 12 and 14 furnished pyrrolo[3,2‐d]isoxazole and isoxazolo[5,4‐b]azepin‐6‐one derivatives 13 and 15 , respectively, while reaction of 1 with 1‐chloro‐4‐(chloromethyl)benzene gave the monoalkylated product 17 . The newly synthesized compounds were screened for their antitumor activity, and the geometry optimizations are in a good agreement with the experimentally observed data.  相似文献   

2.
The reaction of 5‐amino‐3‐methylisoxazole ( 1 ) with formalin and secondary amines gave the corresponding Mannich bases 3 , 4 , 5 , 6 . Alkylation of isoxazole derivative 1 with Mannich bases hydrochloride gave unsubstituted isoxazolo[5,4‐b ]pyridine derivatives 8a , 8b via alkylation at position 4. Moreover, coupling reaction of 1 with different diazonium salts gave the corresponding mono and bisazo dyes of isoxazole derivative. The newly synthesized compounds were screened for their antitumor activity compared with 5‐fluorouracil as a well‐known cytotoxic agent using Ehrlich ascites carcinoma cells. Interestingly, the obtained results showed clearly that compounds 3 , 15 , 8b , 4 , 8a , and 5 exhibited high antitumor activity than 5‐fluorouracil.  相似文献   

3.
4-Cyano-5,6-diphenyl-2,3-dihydropyridazine-3-onc 1 reacts with phosphorous oxychloride to give 70% of the corresponding 3-chloro derivative 2. Treating 2 with anthranilic acid in butanol, 4-cyano-2,3-diphenyl-10H-pyridazino[6,1-b]quinoxaline-10-one, 3 was obtained. Compound 1 reacts with phosphorous pentasulphide to give 3-mercapto derivative 4, which was converted by acrylonitrile to S-(2-cyanoethyl)pyridazine derivative 5. Compound 4 reacts with ethyl bromoacetate and with phenacyl bromide gave the corresponding thieno[2,3-c] pyridazine derivatives 8, 9, Alkylation of 1 with ethyl chloroacetate afforded 3-0-carbethoxymethyl derivative 10. Compound 10 reacts with amines (aniline, hydrazine) to give the corresponding amide and acid hydrazide 13, 12 respectively. Hydrolysis of 10 with sodium hydroxide gave the corresponding acid derivative 11. Treating 1 with methyl iodide, 3-0-methyl derivative 14 was obtained, which was converted by ammonium acetate/acetic acid to 3-amino-4-cyano-5,6-diphenyl pyridazine 15. Compound 1 reacts with methyl magnesium iodide gave 4-acetyl derivative 16, which was reacted with hydrazine, phenyl hydrazine and with hydroxylamine to give the substituted I H pyrazolo [3,4-c] pyridazine 17 a,b and isoxazolo [5,4-c] pyridazine 18 derivatives respectively.  相似文献   

4.
In continuation of our previous work, a series of novel thiophene derivatives 4 , 5 , 6 , 8 , 9 , 9a , 9b , 9c , 9d , 9e , 10 , 10a , 10b , 10c , 10d , 10e , 11 , 12 , 13 , 14 , 15 , 16 were synthesized by the reaction of ethyl 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carboxylate ( 1 ) or 2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile ( 2 ) with different organic reagents. Fusion of 1 with ethylcyanoacetate or maleic anhydride afforded the corresponding thienooxazinone derivative 4 and N‐thienylmalimide derivative 5 , respectively. Acylation of 1 with chloroacetylchloride afforded the amide 6 , which was cyclized with ammonium thiocyanate to give the corresponding N‐theinylthiazole derivative 8 . On the other hand, reaction of 1 with substituted aroylisothiocyanate derivatives gave the corresponding thiourea derivatives 9a , 9b , 9c , 9d , 9e , which were cyclized by the action of sodium ethoxide to afford the corresponding N‐substituted thiopyrimidine derivatives 10a , 10b , 10c , 10d , 10e . Condensation of 2 with acid anhydrides in refluxing acetic acid afforded the corresponding imide carbonitrile derivatives 11 , 12 , 13 . Similarly, condensation of 1 with the previous acid anhydride yielded the corresponding imide ethyl ester derivatives 14 , 15 , 16 , respectively. The structures of newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, MS spectral data, and elemental analysis. The detailed synthesis, spectroscopic data, LD50, and pharmacological activities of the synthesized compounds are reported.  相似文献   

5.
Treatment of arylidene malononitriles 2A – C with 1‐cyanomethylisoquinoline 1 afforded 4‐amino‐2‐arylpyrido[2,1‐a ]isoquinoline‐1,3‐dicarbonitrile derivatives 5A – C , which converted to formimidates 6A – C via reaction with triethylorthoformate. Treatment of the latter compounds with hydrazine hydrate gave the corresponding amino–imino compounds 7A – C , which underwent Dimroth rearrangement to afford 13‐aryl‐1‐hydrazinylpyrimido[5′,4′:5,6]pyrido[2,1‐a ]isoquinoline‐12‐carbonitrile 8A – C . The latter reacted with aldehyde to give 9a – i . Oxidative cyclization of the latter compounds 9a – i gave [1,2,4]triazolo[4″,3″:1′,6′]‐pyrimido[5′,4′:5,6]pyrido[2,1‐a ]isoquinolines 10a , d , g . Such compounds isomerized to the thermodynamically more stable isomers [1,2,4]triazolo[1″,5″:1′,6′]pyrimido[5′,4′:5,6]‐pyrido[2,1‐a ]isoquinolines 11a , d , g . Antimicrobial activities for some compounds were studied.  相似文献   

6.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

7.
Several new heterocyclic compounds such as 7‐substituted pyrazolo[1,5‐a ]pyrimidine ( 5a–e ) derivatives have been synthesized by the reactions of the versatile unreported sodium 3‐(4‐methyl‐2‐(4‐methylphenylsulfonamido)thiazol‐5‐yl)‐3‐oxoprop‐1‐en‐1‐olate (2) with amino heterocyclic ( 3a–e ) derivatives. Reaction of (2) with hydrazonyl halide ( 7a–d ) and hydroximoyl chloride ( 11a,b ) derivatives followed by reaction with hydrazine hydrate afforded pyrazolo[3,4‐d ]pyridazine and isoxazolo[3,4‐d ]pyridazine derivatives, respectively incorporating a thiazole moiety have been described. All newly synthesized compounds were elucidated by considering the data of both elemental and spectral analysis.  相似文献   

8.
The reaction of 3‐amino‐4,6‐dimethylthieno[2,3‐b]pyridine‐2‐carboxamide (1a) or its N‐aryl derivatives 1b‐d with carbon disulphide gave the pyridothienopyrimidines 2a‐d , whilst when the same reaction was carried out using N1‐arylidene‐3‐amino‐4,6‐dimethylthieno[2,3‐b]pyridine‐2‐carbohydrazides (1e‐h) , pyridothienothiazine 3 was obtained. Also, refluxing of 1b‐d with acetic anhydride afforded oxazinone derivative 4 . Compounds 2a and 2b‐d were also obtained by the treatment of thiazine 3 with ammonium acetate or aromatic amines, respectively. When compound 2a was allowed to react with arylidene malononitriles or ethyl α‐cyanocinnamate, novel pyrido[3″,2″:4′,5′]thieno[3′,2′:4,5]pyrimido[2,1‐b][1,3] thiazines 5a‐c were obtained. Treatment of 2b‐d with bromine in acetic acid furnished the disulphide derivatives 6a‐c . U.V. irradiation of 2b‐d resulted in the formation of pyrido[3″,2″:4′,5′]thieno[3′,2′:4,5]pyrimido[2,1‐b]benzthiazoles 7a‐c . The reaction of 2a‐d with some halocarbonyl compounds afforded the corresponding S‐substituted thiopyrido thienopyrimidines 8a‐j . Compound 8b was readily cyclized into the corresponding thiazolo[3″,2″‐a]‐pyrido[3′,2′:4,5]thieno[3,2‐d]pyrimidine 9 upon treatment with conc. sulphuric acid. Heating of 2a,b with hydrazine hydrate in pyridine afforded the hydrazino derivatives 11a,b . Reaction of ester 8c with hydrazine hydrate in ethanol gave acethydrazide 10 . Compounds 10 and 11a,b were used as versatile synthons for other new pyridothienopyrimidines 12–15 as well as [1,2,4] triazolopyridothienopyrimidines 16–19.  相似文献   

9.
Cyclocondensation of 5‐amino‐6‐methyl‐2‐morpholinopyrimidine‐4‐thiol ( 1 ) and 2‐bromo‐5,5‐dimethylcyclohexane‐1,3‐dione ( 2 ) under mild reaction condition afforded 4,7,7‐trimethyl‐2‐morpholino‐7,8‐dihydro‐5H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐9(6H )‐one ( 3 ). The 1H and 13C NMR data of compound ( 3 ) are demonstrated that this compound exists primarily in the enamino ketone form. Reaction of compound ( 3 ) with phosphorous oxychloride gave 4‐(9‐chloro‐4,7,7‐trimethyl‐7,8‐dihydro‐6H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐2‐yl)morpholine ( 4 ). Nucleophilic substitution of chlorine atom of compound ( 4 ) with typical secondary amines in DMF and K2CO3 furnished the new substituted derivatives of 4‐(4,7,7‐trimethyl‐7,8‐dihydro‐6H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐2‐yl)morpholine ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h ). All the synthesized products were characterized and confirmed by their spectroscopic and microanalytical data.  相似文献   

10.
The reaction of 3‐amino‐5‐oxa‐2‐thia‐cyclopenta[a]naphthalene‐4‐one 2b with substituted acetylenes afforded C‐1 alkylation products. On the other hand, reaction of 17‐amino‐15‐methyl‐11‐oxa‐16‐thiacyclopenta[a]phenanthrene‐12‐one 5 with substituted acetylenes and electron‐poor olefins afforded the condensed thienopyridine derivatives 7 and 11a – c . The reaction of 5 with acrylonitrile and with 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione afforded compounds 13 and 21 with loss of H2S via the expected [4 + 2] cycloaddition sequence. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:502–507, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20047  相似文献   

11.
The synthesis of novel spiro indolinyl isoxazolo[2,3‐c] [1,3,5]thiadiazepinones has been achieved by using one‐pot three‐component domino reaction from 3‐amino‐5‐methylisoxazole, substituted isatins, and mercapto acetic acid by employing p‐toluene sulfonic acid as Lewis acid catalyst. The salient features of the present method are mild reaction conditions, cost effective, environmentally benign, high yields of products and operational simplicity.  相似文献   

12.
5-Amino-3-methylisothiazole-4-carbonitrile 2 was prepared by oxidation of 3-amino-2-cyano-thiocrotonamide 1 . A series of 4-amino-3-methylisothiazolo[5,4-d]pyrimidines 6 was derived from 2 by reaction with orthoesters followed by cyclization with primary amines. Hydrolysis of 2 to the corresponding amide 10 followed by cyclization with orthoesters gave the corresponding 5H-isothiazolo[5,4-d]pyrimidin-4-ones 11 . Reactions of 2 and 10 with sodium methyl xanthate gave the corresponding pyrimidinethione derivatives 12 and 13.  相似文献   

13.
Ethyl 3‐amino‐4‐chlorothieno[3,2‐c]quinoline‐2‐carboxylate ( 4 ) is a versatile synthon, prepared by reacting an equimolar amount of 2,4‐dichloroquinoline‐3‐carbonitrile ( 1 ) with ethyl mercaptoacetate ( 2 ). Ethyl 5‐alkyl‐5H‐1‐thia‐3,5,6‐triazaaceanfhrylene‐2‐carboxylates 9a‐c , novel perianellated tetracyclic heteroaro‐matics, were prepared by refluxing 4 with excess of primary amines 7a‐c to yield the corresponding amino‐thieno[3,2‐c]quinolines 8a‐c . Subsequent reaction with an excess of triethyl orthoformate (TEO) furnished 9a‐c . Reaction of 4 with TEO in Ac2O at reflux, gave the simple acetylated compounds, thieno[3,2‐c]‐quinolines 12 and 13 . Refluxing 4 with benzylamine ( 7d ) gave 10 , and subsequent treatment with TEO gave the tetracyclic compound 11 . Refluxing 13 with an excess of alkylamines 7a‐d gave the fhieno[3,2‐c]quino‐lines 15 . Refluxing the aminothienoquinolines 8b with an excess of triethyl orthoacetate gave thieno[3,2‐c]quinoline 17 , while heating with Ac2O gave 18 and 19 , with small amounts of 16 . Reaction of 8a,b with ethyl chloroformate and phenylisothiocyanate generated the new 1‐thia‐3,5,6‐triazaaceanthrylenes 20a,b and 21a,b , respectively. Diazotization of 8a‐c afforded the novel tetracyclic ethyl 5‐alkyl‐5H‐1‐fhia‐3,4,5,6‐tetraazaaceanthrylene‐2‐carboxylates 22a‐c in good yields.  相似文献   

14.
Treatment of 5‐bromo‐2‐(bromoacetyl)thiophene ( 1 ) with isoquinoline gave the isoquinolinium bromide 2 . Reaction of 2 with acrylic acid derivatives, in the presence of MnO2, afforded the 3‐[(5‐bromothiophen‐2‐ylcarbonyl]pyrrolo[2,1‐a]‐isoquinolines 3a , 3b . Suzuki–Miyaura cross‐coupling reactions of the bromides 3a , 3b in aqueous solvent with several activated and deactivated aryl(hetaryl)boronic acids 4a , 4b , 4c , 4d , 4e , 4f using a Pd(II)‐complex under thermal heating as well as microwave‐irradiating conditions afforded the corresponding new arylated pyrrolo[2,1‐a]isoquinoline derivatives 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 in high to excellent isolated yields.  相似文献   

15.
Reaction of 3,5‐diaminothiophene‐2‐carbonitrile derivatives 3a‐c with ethoxycarbonylmethyl isothiocyanate and/or N‐[bis(methylthio)methylene]glycine ethyl ester led to formation of 7‐substituted‐8‐amino‐5‐thioxo‐6H‐imidazo[1,2:1′,6′]pyrimido[5,4‐b]thiophene‐2(3H)‐one derivatives 6a‐c and 7‐substituted‐8‐amino‐5‐(methylthio)imidazo[1,2:1′,6′]pyrimido[5,4‐b]thiophene‐2(3H)‐one 7a‐c , respectively. Also, the synthetic potential of the β‐enaminonitrile moiety in 3a‐c has been explored; it proved to be a promising candiate for the synthesis of 1,6‐disubstituted‐2,4‐diamino‐7,8‐dihydro‐8‐oxopyrrolo[1,2‐a]thieno[2,3‐e]pyrimidine derivatives 10a‐f and pyrido[2′,3′:6,5]pyrimido[3,4‐a]benzimidazole derivatives 12a,b .  相似文献   

16.
The enaminones 1b,d,f react with 4‐phenyl‐3‐methyl‐5‐pyrazoleamine 3a to yield the pyrazole derivatives 4a‐c that cyclised readily on reflux in pyridine solution in presence of hydrochloric acid to yield the pyrazolo[1,5‐a]pyrimidines 5a‐c. Similarly 3(5)‐amino‐1H‐triazole (3b) reacted with 1b,d,f to yield the triazolo[1,5‐a]pyrimidines 5d‐f. In contrast attempted condensation of the 5‐tetrazoloamine (3c) with 1a,d,e resulted in its trimerisation and only triaroylbenzene 8a,d,e was isolated. The reaction of 1a,b,d with anthranilonitrile 9a and the reaction of 1a‐c with the 2‐aminocyclohexene thiophene‐3‐nitrile 10a afforded the cis enaminones 11a‐c and 12a‐c. Similarly, reaction of 1a‐c with the methylanthranilate 9b and reaction of 1b,e with ethyl 2‐aminocyclohexene thiophene‐3‐carboxylate 10b afforded the cis enaminones 11d‐f and 12d,e respectively. Attempted cyclization of 11a‐c into quinoline failed. Successful cyclization of 11d into the quinolinone 13 could be affected, on heating for five minutes in a domestic microwave oven at full power. The reaction of 1a‐c,f with piperidine afforded the trans enaminones 14a‐d. Similarly, trans 14e was formed from the reaction of 1b with morpholine. The coupling reaction of 1b with excess of benzene diazonium chloride afforded the formazane 16. The enaminone 2 reacted with heterocyclic amines to yield the pyridones 17,18.  相似文献   

17.
The reaction of 2,3‐dihydro‐2,3‐epoxy‐1,4‐naphthoquinone ( 4 ) with substituted anilines furnished the corresponding benzo[fused]heterocyclic derivatives 5 , 6 , 6a , 6b , 7 , 8 . Furthermore, treatment of benzo[a]phenothiazine derivative 7 with halo compounds, namely, ethyl bromoacetate, phenacyl bromide, dibromoethane, or chloroacetone afforded ether derivatives 11 , 12 , 13 , 14 , respectively. Moreover, the reaction of 11 with o‐substituted aniline gave the corresponding benzo[a]phenothiazin‐5‐one derivatives 15 , 16 , 17 and benzo[d][1,3]oxazin‐4‐one 18 , respectively. Finally, the chromenone derivative 19 was synthesized via the reaction of ester derivative 11 with salicyaldhyde in refluxing pyridine. The newly synthesized compounds were characterized by spectroscopic measurements (IR, 1H NMR, 13C NMR, and mass spectra).  相似文献   

18.
Thermolysis of 6-azidouracils 1 in the presence of polyphosphoric acid leads either to oxazolo[5,4-d]pyrimidine-5,7-diones 5 (by reaction with benzoic acid 2a ) or to isoxazolo[3,4-d]pyrimidine-4,6-diones 7 (by reaction with aliphatic carboxylic acids 2b,c ). 5-Benzoylpyrimidinetriones 12 could be shown to cyclize to isoxazolo[5,4-d]pyrimidine-4,6-diones 15 by chlorination with phosphorus pentachloride and subsequent reaction with sodium azide.  相似文献   

19.
Treatment of 2‐tosyloxybenzylidinethiosemicarbazone ( 2 ) with active halo compounds afforded thiazoles 3 – 5 . Moreover, reaction of compound 2 with acetic anhydride or dimethylformamide dimethylacetal gave N,N diacetyl 6 and dimethylamino derivatives 7 , respectively. Cyclization of thiazole derivatives 3 with some arylidenemalononitriles yielded thiazolo[2,3‐d]pyrans 8 – 12 . Multicomponent reaction of 2‐tosyloxybenzaldehyde ( 1 ) with urea, thiourea, or compound 2 and ethyl acetoacetate or acetylacetone afforded pyrimidines 13 – 14 . The structures of compounds were elucidated by elemental and spectral analyses.  相似文献   

20.
A variety of nitrogen‐containing heterocycles were synthesized by passing vapors of aromatic amines over calcium oxide at 450–650 °C under nitrogen carrier gas. Reaction of 2‐aminobiphenyl 3a at 560 °C gave carbazole 4 in 80% yield. Reaction of 2, 2′‐diaminobiphenyl 3b afforded a mixture of carbazole 4 and 4‐aminocarbozole 6b. In the case of 2‐amino‐2′‐nitrobiphenyl 3c, benzo[c]cinnoline 7 was obtained along with carbazole 4. Reaction of 2‐amino‐2′‐methoxybiphenyl 3d gave four products of carbazole 4,4‐hydroxycarbazole 6e, phenanthridine 8 and dibenzofuran 9. Reaction of 2‐aminodiphenylmethane 5a afforded acridine 10. In the case of 2‐aminobenzophenone 5b, acridone 11 was obtained as a major product. Reaction of 2‐aminobenzhydrol 5c gave acridine 10. When 2‐aminodiphenylamine 5d was reacted, phenazine 12 was obtained in good yield. In contrast, reaction of 2‐aminodiphenyl ether 5e produced only 2‐hydroxydiphenylamine 13. Reaction of 4‐aminophenanthrene 14 produced 4H‐benzo[def]carbazole 15 in 61% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号