首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The controlled addition of structurally defined components to live cell membranes can facilitate the molecular level analysis of cell surface phenomena. Here we demonstrate that cell surfaces can be engineered to display synthetic bioactive polymers at defined densities by exogenous membrane insertion. The polymers were designed to mimic native cell-surface mucin glycoproteins, which are defined by their dense glycosylation patterns and rod-like structures. End-functionalization with a hydrophobic anchor permitted incorporation into the membranes of live cultured cells. We probed the dynamic behavior of cell-bound glycopolymers bearing various hydrophobic anchors and glycan structures using fluorescence correlation spectroscopy (FCS). Their diffusion properties mirrored those of many natural membrane-associated biomolecules. Furthermore, the membrane-bound glycopolymers were internalized into early endosomes similarly to endogenous membrane components and were capable of specific interactions with protein receptors. This system provides a platform to study cell-surface phenomena with a degree of chemical control that cannot be achieved using conventional biological tools.  相似文献   

2.
Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin‐labeled in whole cells and outer membranes and interspin distances were measured to a spin‐labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein–protein/ligand interactions at surface‐exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment.  相似文献   

3.
There has been increasing interest in methods to generate synthetic lipid membranes as key constituents of artificial cells or to develop new tools for remodeling membranes in living cells. However, the biosynthesis of phospholipids involves elaborate enzymatic pathways that are challenging to reconstitute in vitro. An alternative approach is to use chemical reactions to non-enzymatically generate natural or non-canonical phospholipids de novo. Previous reports have shown that synthetic lipid membranes can be formed in situ using various ligation chemistries, but these methods lack biocompatibility and/or suffer from slow kinetics at physiological pH. Thus, it would be valuable to develop chemoselective strategies for synthesizing phospholipids from water-soluble precursors that are compatible with synthetic or living cells Here, we demonstrate that amide-forming ligations between lipid precursors bearing hydroxylamines and α-ketoacids (KAs) or potassium acyltrifluoroborates (KATs) can be used to prepare non-canonical phospholipids at physiological pH conditions. The generated amide-linked phospholipids spontaneously self-assemble into cell-like micron-sized vesicles similar to natural phospholipid membranes. We show that lipid synthesis using KAT ligation proceeds extremely rapidly, and the high selectivity and biocompatibility of the approach facilitates the in situ synthesis of phospholipids and associated membranes in living cells.  相似文献   

4.
The effects of cholesterol, a lipid mostly found in the sarcolemmal membranes, on the interaction of amiodarone with synthetic models of dimyristoylphosphatidylcholine (DMPC) and with native models of mitochondria and brain microsomes was studied. Alterations on the structural order of lipids were assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) probing the bilayer core, and of the propionic acid derivative 3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid (DPH-PA) probing the outer regions of the bilayer. As detected by the probes and according to classic observations, cholesterol progressively increased the molecular order in the fluid phase of DMPC. Additionally, it modulated the type and extension of amiodarone effects. For low cholesterol concentrations (≤10–15 mol%), amiodarone (50 μM) ordered DMPC bilayers and the effects were almost identical to those observed in pure DMPC. For higher cholesterol concentrations, amiodarone ordering effects decreased slightly and faded for cholesterol concentrations as high as 25 and 30 mol%, when detected by DPH-PA and DPH, respectively. Above these high cholesterol concentrations, a crossover from ordering to disordering effects of amiodarone was apparent, either in the upper region of the bilayer or the hydrophobic core. The effects of amiodarone in native membranes of mitochondria and brain microsomes, in which "native" cholesterol accounts for about 0 and 25 mol%, respectively, correlated reasonably with the results in models of synthetic lipids. There is a close relationship between cholesterol concentration and amiodarone effects, in either synthetic models or native model membranes. Therefore, it may be predicted that the lipid physicochemical properties regulated by cholesterol concentration will also modulate the effects of amiodarone in sarcolemma.  相似文献   

5.
Lysophospholipids are known to play a role in a wide range of cellular processes involving membrane–protein or membrane–membrane interactions; however lysolipids–lamellar lipids interactions remain unclear. The effects of lysolipids on membrane order and dynamics were examined using optical birefringence and fluorescence techniques. We found that lysophosphatidic acid (LPA) induces a considerable disorder in chain orientation for synthetic lipid of dimyristoyl-phosphatidylcholines (DMPC), whereas a slight order for natural lipid of egg yolk phosphatidylcholine (Egg-PC), e.g. the chain order decreases by 10% at 0.1 mole ratio for DMPC in comparison with the membranes without LPA and increases by 3.4% at 0.09 mole ratio for Egg-PC. Also, membrane fluidity corresponds with the change in the chain disorder, namely, the fluidity increases for DMPC membranes, while decreases for Egg-PC membranes by addition of LPA. The difference in the effects of LPA is interpreted by a difference in the chain packing between the synthetic and the natural lipid bilayers. LPA can be incorporated into natural lipid membranes without disturbance, and readjusts itself to a more favorable hydrophobic match with the bilayers. Lysophophatidylcholine (LPC) also induces a disorder in DMPC membranes, but the decrease in chain order is only half compared with that for LPA.  相似文献   

6.
Once removed from their natural environment, membrane proteins depend on membrane‐mimetic systems to retain their native structures and functions. To this end, lipid‐bilayer nanodiscs that are bounded by scaffold proteins or amphiphilic polymers such as styrene/maleic acid (SMA) copolymers have been introduced as alternatives to detergent micelles and liposomes for in vitro membrane‐protein research. Herein, we show that an alternating diisobutylene/maleic acid (DIBMA) copolymer shows equal performance to SMA in solubilizing phospholipids, stabilizes an integral membrane enzyme in functional bilayer nanodiscs, and extracts proteins of various sizes directly from cellular membranes. Unlike aromatic SMA, aliphatic DIBMA has only a mild effect on lipid acyl‐chain order, does not interfere with optical spectroscopy in the far‐UV range, and does not precipitate in the presence of low millimolar concentrations of divalent cations.  相似文献   

7.
We describe an NMR approach for detecting the interactions between phospholipid membranes and proteins, peptides, or small molecules. First, 1H-13C dipolar coupling profiles are obtained from hydrated lipid samples at natural isotope abundance using cross-polarization magic-angle spinning NMR methods. Principal component analysis of dipolar coupling profiles for synthetic lipid membranes in the presence of a range of biologically active additives reveals clusters that relate to different modes of interaction of the additives with the lipid bilayer. Finally, by representing profiles from multiple samples in the form of contour plots, it is possible to reveal statistically significant changes in dipolar couplings, which reflect perturbations in the lipid molecules at the membrane surface or within the hydrophobic interior.  相似文献   

8.
Solid‐state NMR is a powerful tool for studying membrane proteins in a native‐like lipid environment. 3D magic angle spinning (MAS) NMR was employed to characterize the structure of E.coli diacylglycerol kinase (DAGK) reconstituted into its native E.coli lipid membranes. The secondary structure and topology of DAGK revealed by solid‐state NMR are different from those determined by solution‐state NMR and X‐ray crystallography. This study provides a good example for demonstrating the influence of membrane environments on the structure of membrane proteins.  相似文献   

9.
The synthetic peptide acetyl-K(2)-G-L(24)-K(2)-A-amide (P(24)) and its analogs have been successfully utilized as models of the hydrophobic transmembrane alpha-helical segments of integral membrane proteins. The central polyleucine region of these peptides was designed to form a maximally stable, very hydrophobic alpha-helix which will partition strongly into the hydrophobic environment of the lipid bilayer core, while the dilysine caps were designed to anchor the ends of these peptides to the polar surface of the lipid bilayer and to inhibit the lateral aggregation of these peptides. Moreover, the normally positively charged N-terminus and the negatively charged C-terminus have both been blocked in order to provide a symmetrical tetracationic peptide, which will more faithfully mimic the transbilayer region of natural membrane proteins and preclude favorable electrostatic interactions. In fact, P(24) adopts a very stable alpha-helical conformation and transbilayer orientation in lipid model membranes. The results of our recent studies of the interaction of this family of alpha-helical transmembrane peptides with phospholipid bilayers are summarized here.  相似文献   

10.
Abstract— The interaction between lipid and chlorophyll in the photosensitive model bilayer membranes was studied by investigating the effects of the hydrocarbon chain length (6–20 carbons), degree of saturation (0–3 double bonds), and head group character of a series of synthetic and natural lipids on the membrane photoresponse. The results suggest, as a general phenomenon, that any stable membrane formed in the lipid-chlorophyll a -β-carotene system is photosensitive regardless of the type of lipid in the membrane. The magnitude of the photoresponse (Δ V ) varies for different lipids, and membranes containing natural phospholipids have a higher Δ V . The presence of chlorophyll a in a lipid solution enhances the lipid membrane stability.  相似文献   

11.
Characterization of the oligomerization of membrane-associated peptides is important to understand the folding and function of biomolecules like antimicrobial peptides, fusion peptides, amyloid peptides, toxins, and ion channels. However, this has been considered to be very difficult, because the amphipathic properties of the constituents of the cell membrane pose tremendous challenges to most commonly used biophysical techniques. In this study, we present the application of a simple (14)N solid-state NMR spectroscopy of aligned model membranes containing a phosphatidyl choline lipid to investigate the oligomerization of membrane-associated peptides. Since the near-symmetric nature of the choline headgroup of a phosphocholine lipid considerably reduces the (14)N quadrupole coupling, there are significant practical advantages in using (14)N solid-state NMR experiments to probe the interaction of peptide or protein with the surface of model membranes. Experimental results for several membrane-associated peptides are presented in this paper. Our results suggest that the experimentally measured (14)N quadrupole splitting of the lipid depends on the peptide-induced changes in the electrostatic potential of the lipid bilayer surface and therefore on the nature of the peptide, peptide-membrane interaction, and peptide-peptide interaction. It is inferred that the membrane orientation and oligomerization of the membrane-associated peptides can be measured using (14)N solid-state NMR spectroscopy.  相似文献   

12.
Membrane proteins are some of the most sophisticated molecules found in nature. These molecules have extraordinary recognition properties; hence, they represent a vast source of specialized materials with potential uses in sensing and screening applications. However, the strict requirement of the native lipid environment to preserve their structure and functionality presents an impediment in building biofunctional materials from these molecules. In general, the purification protocols remove the native lipid support structures found in the cellular environment that stabilize the membrane proteins. Furthermore, the membrane protein structure is often highly complex, typified by large, multisubunit complexes that not only span the lipid bilayer but also contain large (>2 nm) cytoplasmic and extracellular domains that protrude from the membrane. The present study is focused on using a biomimetic approach to build a stable, fluid microenvironment to be used to incorporate larger membrane proteins of interest into a tether-supported lipid bilayer membrane adequately spaced above a substrate passivated to liposome fusion and nonspecific adsorption. Our aim is to reintroduce the supporting structures of the native cell membrane using self-assembled supramolecular complexes constructed on microspheres in an artificial cytoskeleton motif. Central to our architecture is to utilize bacteriorhodopsin (bR), a transmembrane protein, as a biomembrane anchoring molecule to be tethered to surfaces of interest as a sparse structural element in the design. Compared to a typical lipid tether, which inserts into one leaflet of the lipid bilayer, bR anchoring provides an over 8-fold greater hydrophobic surface area in contact with the bilayer. In the work presented here, the silica microsphere surface was biofunctionalized with streptavidin to make it a suitable supporting interface. This was achieved by self-assembly of (p-aminophenyl)trimethoxysilane on the silica surface followed by subsequent conjugation of biotin-PEG3400 (PEG = poly(ethylene glycol) and PEG2000 for further passivation and the binding of streptavidin. We have conjugated bR with biotin-PEG3400 through amine-based coupling to use it as a tether. The biotin-PEG-bR conjugate was further labeled with Texas Red to facilitate localization via fluorescence imaging. Confocal microscopy was utilized to analyze the microsphere surface at different stages of surface modification by employing fluorescent staining techniques. Sparely tethered supported lipid bilayer membranes were constructed successfully on streptavidin-functionalized silica particles (5 mum) using a detergent-based method in which tethered bR nucleates self-assembly of the bilayer membrane. The fluidity of the supported membranes was analyzed using fluorescence recovery after photobleaching in confocal imaging detection mode. The phospholipid diffusion coefficients obtained from these studies indicated that nativelike fluidity was achieved in the tether-supported membranes, thus providing a prospective microenvironment for insertion of membrane proteins of interest.  相似文献   

13.
李娟  郑基深  沈非  方葛敏  郭庆祥  刘磊 《化学进展》2007,19(12):1866-1882
含有非天然氨基酸的蛋白质(如翻译后修饰蛋白质、修饰有探针分子的蛋白质等)是化学生物学中重要的生理活性分子。这些分子难以通过生物表达来获取,而必须使用化学方法来合成。半胱氨酸肽片段连接方法是目前应用于蛋白质化学全合成中的一种重要方法,该方法能够在温和的水溶液中高效地实现肽片段的连接,从而生成天然或者非天然的蛋白质。本文系统地综述了半胱氨酸肽片段连接方法的基本原理,详细讨论了近年来人们对该方法的一些重要改进。最后又介绍了该方法在几类重要的蛋白质分子合成中的代表性应用。  相似文献   

14.
We establish a lipid monolayer supported by a polymer interface that offers advantages over conventional solid-supported membranes for determining the frictional drag at the membrane-protein interface as well as for electric field manipulation of membrane-anchored proteins. Polymer-supported monolayers with functional lipid anchors allow for the specific docking of His-tagged green fluorescent protein variants (His-EGFP and His-DsRed tetramer) onto the membrane surface at a defined surface density. In the first part, we measure the lateral diffusion coefficients of lipids and proteins and calculate the frictional drag at the protein-membrane interface. The second part deals with the electric field-induced accumulation of recombinant proteins on a patterned surface. The mean drift velocity of proteins, which can be obtained analytically from the shape of the steady-state concentration gradient, can be controlled by tuning the interplay of electrophoresis and electroosmosis. The results demonstrate the potential of such molecular constructs for the local functionalization of solid substrates with membrane-associated proteins.  相似文献   

15.
Solid-state NMR spectroscopy is being used to determine the structures of membrane proteins involved in the regulation of apoptosis and ion transport. The Bcl-2 family includes pro- and anti-apoptotic proteins that play a major regulatory role in mitochondrion-dependent apoptosis or programmed cell death. The NMR data obtained for (15)N-labeled anti-apoptotic Bcl-xL in lipid bilayers are consistent with membrane association through insertion of the two central hydrophobic alpha-helices that are also required for channel formation and cytoprotective activity. The FXYD family proteins regulate ion flux across membranes, through interaction with the Na(+), K(+)-ATPase, in tissues that perform fluid and solute transport or that are electrically excitable. We have expressed and purified three FXYD family members, Mat8 (mammary tumor protein), CHIF (channel-inducing factor) and PLM (phospholemman), for structure determination by NMR in lipids. The solid-state NMR spectra of Bcl-2 and FXYD proteins, in uniaxially oriented lipid bilayers, give the first view of their membrane-associated architectures.  相似文献   

16.
We have characterized, in vitro, interactions between hippocampal neuronal cells and silica microbeads coated with synthetic, fluid, lipid bilayer membranes containing the glycosylphosphatidyl inositol (GPI)-linked extracellular domain of the postsynaptic membrane protein neuroligin-1. These bilayer-neuroligin-1 beads activated neuronal cells to form presynaptic nerve terminals at the point of contact in a manner similar to that observed for live PC12 cells, ectopically expressing the full length neuroligin-1. The synthetic membranes exhibited biological activity at neuroligin-1 densities of approximately 1 to 6 proteins/microm(2). Polyolycarbonate beads with neuroligin-1 covalently attached to the surface failed to activate neurons despite the fact that neuroligin-1 binding activity is preserved. This implies that a lipid membrane environment is likely to be essential for neuroligin-1 activity. This technique allows the study of isolated proteins in an environment that has physical properties resembling those of a cell surface; proteins can diffuse freely within the membrane, retain their in vivo orientations, and are in a nondenatured state. In addition, the synthetic membrane environment affords control over both lipid and protein composition. This technology is easily implemented and can be applied to a wide variety of cellular studies.  相似文献   

17.
In this paper, we report on a novel electrophoretic separation and analysis method for membrane pore‐forming proteins in multilayer lipid membranes (MLMs) in order to overcome the problems related to current separation and analysis methods of membrane proteins, and to obtain a high‐performance separation method on the basis of specific properties of the lipid membranes. We constructed MLMs, and subsequently characterized membrane pore‐forming protein behavior in MLMs. Through the use of these MLMs, we were able to successfully separate and analyze membrane pore‐forming proteins in MLMs. To the best of our knowledge, this research is the first example of membrane pore‐forming protein separation in lipid membranes. Our method can be expected to be applied for the separation and analysis of other membrane proteins including intrinsic membrane proteins and to result in high‐performance by utilizing the specific properties of lipid membranes.  相似文献   

18.
Self assembled monolayers and bilayers are produced on a flat glass surface, bound by a thiolipid onto bare gold. 1,2-Dipalmitoyl-sn-Glycero-3-Phosphothioethanol (DPPTE) is used as the molecule binding to the electrode surface. The lipid lambda-alpha-Phosphatidyl-Choline-beta-Oleoyl-g-Palmitoyl (POPC) and the lipid mixture eggphosphatadiylcholine (EPC) are used as spacer lipids with the aim of achieving solid-supported artificial lipid membranes. With the aim of creating and investigating more natural systems, ion carrier proteins such as valinomycin are introduced into the DPPTE/EPC system. The direct influence on the membranes as well as the effects of different ionic solutions on the proteins is shown.  相似文献   

19.
Phospholipid vesicles are of intense fundamental and practical interest, yet methods for their de novo generation from reactive precursors are limited. A non‐enzymatic and chemoselective method to spontaneously generate phospholipid membranes from water‐soluble starting materials would be a powerful tool for generating vesicles and studying lipid membranes. Here we describe the use of native chemical ligation (NCL) to rapidly prepare phospholipids spontaneously from thioesters. While NCL is one of the most popular tools for synthesizing proteins and nucleic acids, to our knowledge this is the first example of using NCL to generate phospholipids de novo. The lipids are capable of in situ synthesis and self‐assembly into vesicles that can grow to several microns in diameter. The selectivity of the NCL reaction makes in situ membrane formation compatible with biological materials such as proteins. This work expands the application of NCL to the formation of phospholipid membranes.  相似文献   

20.
Artificial and natural lipid membranes that elicit transmembrane signaling is are useful as a platform for channel‐based biosensing. In this account we summarize our research on the design of transmembrane signaling associated with lipid bilayer membranes containing nanopore‐forming compounds. Channel‐forming compounds, such as receptor ion‐channels, channel‐forming peptides and synthetic channels, are embedded in planar and spherical bilayer lipid membranes to develop highly sensitive and selective biosensing methods for a variety of analytes. The membrane‐bound receptor approach is useful for introducing receptor sites on both planar and spherical bilayer lipid membranes. Natural receptors in biomembranes are also used for designing of biosensing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号