首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Hu  Y. Wei  B. Sun  T. Wang  D. Chen 《Laser Physics》2012,22(12):1842-1846
We experimentally demonstrate a flexibly switchable multi-wavelength fiber optical parametric oscillator (MW-FOPO) by employing a highly nonlinear dispersion-shifted fiber (HNL-DSF) as the gain medium and a Lyot-Sagnac fiber ring as the comb filter. The wavelength spacing and the number of channels in the switchable MW-FOPO are adjustable by controlling the effective length of polarization maintaining fiber (PMF) segments in the intracavity Lyot-Sagnac filter. We achieve 36 lasing channels with 0.5 nm-spacing and 22 lasing channels with 0.8 nm-spacing in a wavelength range from 1541 to 1559 nm at room temperature. A comparison of the output spectra between the dual-pump MW-FOPO and single-pump MW-FOPO is presented as well.  相似文献   

2.
Sun B  Hu K  Wei Y  Chen D  Gao S  Wang T  He S 《Optics letters》2012,37(1):106-108
We propose a double-pumped ring cavity multiwavelength fiber optical parametric oscillator (MW-FOPO) using a highly nonlinear dispersion-shifted fiber (HNL-DSF) as the gain medium and a polarization maintained fiber based Sagnac loop filter as the comblike filter. 22-wavelength lasing of the double-pumped MW-FOPO with a ripple less than ±2.5 dB and a wavelength spacing of about 0.8 nm in a wavelength range from 1541 nm to 1558 nm is experimentally demonstrated. We discussed the power stability of the multiwavelength lasing of the double-pumped MW-FOPO. A comparison of the output spectra between the double-pumped MW-FOPO and single-pumped MW-FOPO is also presented.  相似文献   

3.
A multi-wavelength fiber laser based on the cascaded four-wave mixing in highly-nonlinear photonic-crystal fiber is proposed and investigated. The cascade operation is initiated by two strong pump waves boosted by multi-mode pumping erbium/ytterbium co-doped double-cladding fiber amplification technique. A segment of highly-nonlinear near-zero-dispersion-flattened photonic crystal fiber is employed to induce highly efficient cascaded four-wave mixing. The wavelength spacing can be continuously tunable by stretching the fiber Bragg grating. Experimental results show that multiple wavelengths with a high optical side-mode suppression-ratio of >30 dB are achieved. Furthermore, the proposed multi-wavelength fiber laser exhibits an excellent stability at room temperature.  相似文献   

4.
Zhang  Z. X.  Ye  Z. Q.  Sang  M. H.  Nie  Y. Y. 《Laser Physics》2011,21(10):1820-1824
A multiwavelength erbium-doped fiber laser based on nonlinear polarization rotation with incorporation of a highly nonlinear fiber has been demonstrated. Stable multi-wavelength operation at room temperature is realized owing to the intensity-dependent transmission in fiber laser with nonlinear-polarization-rotation effect. And benefiting from the four-wave mixing in the highly nonlinear fiber, the uniformity and stabilization of the output multi-wavelength lasing have been greatly improved, in comparison with similar laser using single-mode fiber. Moreover, the wavelength spacing can be arbitrarily chosen according to the requirement through changing the PMF length.  相似文献   

5.
A stable multi-wavelength erbium-doped fiber laser based on four-wave mixing (FWM) in a photonic crystal fiber (PCF) is demonstrated in this paper. The phase matching condition for four-wave mixing in the photonic crystal fiber has been enhanced using a seed signal and a polarisation controller to control the states of polarisation in the ring laser cavity. At a maximum pump power of 1480 nm, 5 lines are observed with nearly 2.15 nm spacing between the lines, and with a signal to noise ratio of more than 20 dB. The number of channels and wavelength spacing can be controlled by varying the output coupler ratio.  相似文献   

6.
We demonstrate a multi-wavelength erbium-doped fiber laser (EDFL) using erbium gain and four-wave mixing (FWM) effect in a piece of erbium-doped fiber (EDF) with high erbium ion concentration. The EDF has a pump absorption rate of 24.6 dB/m at 979 nm and is bi-directionally pumped by 980-nm laser diodes. FWM effect redistributes the energy of different oscillating lines and causes multi-wavelength operation. The laser generates more than 22 lines of optical comb with a line spacing of approximately 0.10 nm at the 1569-nm region using only 1.5-m-long EDF.  相似文献   

7.
J. Fu  D. Chen  B. Sun  S. Gao 《Laser Physics》2010,20(10):1907-1912
A novel configuration of compound-cavity multi-wavelength Brillouin erbium fiber laser is proposed and experimentally demonstrated. With an incident optical carrier power of 8 dBm, at least 14 lasing lines are obtained with a wavelength spacing of ∼0.08 nm. Stability and power uniformity of the multi-wave-length lasing are ensured by the flat hybrid gain of Brillouin and erbium, the compound-cavity structure, and the four-wave mixing suppression using a long (10 km) single-mode fiber. A stable and frequency-switchable microwave can be achieved by incorporating a fiber Bragg grating filter to select the desired nth-order Stokes wave and beating it with the optical carrier at a photodetector. In our experiment, the 1st-4th-order Stokes waves are filtered respectively and hence a high-quality microwave with a switchable frequency from ∼10 to ∼40 GHz and a tuning step of ∼10 GHz is achieved. The signal-to-noise ratio is measured to be >25 dB.  相似文献   

8.
A Mach–Zehnder interferometer (MZI) which is used as a wavelength-spacing tunable comb filter in a fiber ring laser is built by employing an optical variable delay line (OVDL). Stable multi-wavelength semiconductor optical amplifier (SOA)-fiber ring laser based on an SOA and the MZI comb filter is achieved. Wavelength spacing can be continuously tuned by adjusting the OVDL and, as an example, multi-wavelength lasing with the wavelength spacing of 0.4, 0.8, or 1.6 nm is demonstrated. The output of the proposed multi-wavelength SOA-fiber ring laser is quite stable at room temperature and the output spectrum can be adjusted by controlling the bias current of the SOA.  相似文献   

9.
A optical filter based on Sagnac interferometer was proposed to be acted as a comb filter with equal frequency spacing and good signal to noise ratio (SNR), which was composed of an 8.14 m stress-induced Hi-Bi (high-birefringence) PM (polarization-maintaining) fiber. Using this multi-wavelength Sagnac comb filter and a gain flattening Sagnac filter that made the output spectra flattening at different pump powers, a 25-channel multi-wavelength all-fiber source were successfully generated with channel spacing of 0.8 nm with respect to the center wavelength at 1550 nm and flattened gain about ±1 dB peak deviation. The channel spacing can be further reduced to 0.4 nm to produce a DWDM (dense wavelength division multiplexing) source, simply by increasing the Hi-Bi fiber to be 16.28 m. It can be used in many applications such as WDM (wavelength division multiplexing), optical amplifiers with a high SNR, narrow band filters and optical sensors.  相似文献   

10.
Multi-wavelength Ytterbium-doped fiber laser (YDFL) is demonstrated using a longitudinal mode interference assisted by a four-wave mixing (FWM) effect in a ring laser cavity. The gain medium is a 16 m long of the fabricated (Ytterbium-doped fiber) YDF, which has a core composition of 0.8 wt % of Yb2O3, 1.8 wt % of Al2O3 and 23 wt % of GeO2, Ytterbium ion fluorescence lifetime of 1.1 ms and absorption of 9.0 dB/m at the pump wavelength of 976 nm. 20 m long photonic crystal fiber (PCF) is used to provide FWM effect so that the energy of different oscillating lines can be redistributed to improve multi-wavelength operation. The proposed laser generates 12 lines of optical comb with a line spacing of approximately 0.59 nm at 1035 nm region.  相似文献   

11.
A stable room-temperature multi-wavelength erbium-doped fiber ring laser has been proposed and investigated experimentally. A phase modulator composed of a piece of fiber wrapped around a cylindrical piezoelectric transducer is used to suppress the mode competition. And the combined action between optical fiber and polarization-dependent isolator provides the wavelength-dependent loss induced by wavelength-dependent polarization rotation mechanism to flatten the output spectrum, tune the locations and improve the number of the lasing lines. Stable multi-wavelength lasing with wavelengths up to 23 and the wavelength spacing of 0.4 nm is demonstrated. Moreover, the pulse train output was also observed.  相似文献   

12.
Phase-matched parametric four-wave mixing in higher-order guided modes of a photonic crystal fiber is shown to result in an efficient decay of 40-fs 800-nm Ti:sapphire laser pump pulses into an anti-Stokes signal with a central wavelength around 590-600 nm and a Stokes signal centered at 1.25 microm. The photonic crystal fiber is designed in such a way as to minimize the group-velocity dispersion at the pump wavelength, phase match the parametric four-wave-mixing process, and reduce the group delay between the pump and the anti-Stokes pulses. The duration of the anti-Stokes pulse under these conditions, as shown by cross-correlation frequency-resolved optical gating measurements, is less than 200 fs.  相似文献   

13.
Han YG  Tran TV  Lee SB 《Optics letters》2006,31(6):697-699
We experimentally demonstrate a wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on degenerate four-wave mixing in a dispersion-shifted fiber incorporating multiple-fiber Bragg gratings. We have achieved stable operation of the multiwavelength erbium-doped fiber laser, which has 0.8 nm spacing ten-channel lasing wavelengths and a high extinction ratio of more than approximately 45 dB, at room temperature. The output power of the multiwavelength erbium-doped fiber laser is stable, so the peak fluctuation is less than approximately 0.2 dB. By changing the properties such as loss and polarization state of multiple fiber Bragg grating cavities, we can exercise flexible control of the wavelength spacing of the multiwavelength output. We can also obtain switchable multiwavelength lasing operation by elimination of the effects of alternate single-fiber Bragg gratings.  相似文献   

14.
A nonlinear polarisation rotation (NPR) based multi-wavelength laser source is demonstrated using a semiconductor optical amplifier (SOA) and photonic crystal fiber (PCF). The SOA acts as not only the gain medium but also the phase retarder for multi-wavelength oscillation in conjunction with an isolator. The incorporation of PCF improves the NPR effect and thus assists in the multiwavelength generation. The wavelength spacing reduces from 4.82 to 2.76 nm as the PCF length increases from 50 to 100 m. With a 100 m long PCF, the proposed laser produces at least 42 lasing wavelengths with optical signal to noise ratio of more than 10 dB.  相似文献   

15.
李建设  李曙光  赵原源  刘强  范振凯  王光耀 《物理学报》2016,65(21):214201-214201
采用可以减小纤芯面积的小气孔设计方案巧妙设计并成功拉制了一根高非线性的单零色散微结构光纤.利用有限元法模拟并计算得到了该光纤的基模有效折射率、色散系数和非线性系数等基本属性随波长的变化关系,然后利用四波混频的有效相位失配方程模拟了其相位失配曲线.模拟表明,在该光纤中可以同时发生两组四波混频.在位于微结构光纤的正常色散区的0.800,0.810和0.820μm三个波长处,分别采用不同的功率抽运,在实验上都非常明显地观察到了分列于抽运波长两侧的四个增益波带的产生.经与相位失配曲线比较,发现它们满足相位匹配条件,从而证明了两组四波混频过程的同时发生.实验结果与理论预言符合得很好.发生在正常色散区的四波混频效应的产生可归结于负的四阶色散对相位匹配过程的贡献.本文研究可对微结构光纤的结构设计和基于四波混频的多波长转移技术的发展提供经验与借鉴,同时也对非常见波段激光器和宽带光源的开发具有参考意义.  相似文献   

16.
Multi-wavelength Brillouin fiber laser using dual-cavity configuration   总被引:2,自引:0,他引:2  
A simple technique for achieving multi-wavelength tunable multi-wavelength Brillouin fiber laser (BFL) based on dual-pass configuration is demonstrated. The BFL uses a piece of 10 km long non-zero dispersion shifted fiber (NZ-DSF) as a Brillouin gain medium to obtain odd-order Brillouin Stokes waves as an output with the line spacing of 0.16 nm (20 GHz) between each two consecutive waves by employing even-order Brillouin Stokes to improve output performance of the laser. With a BP of 15.3 dBm, at least 15 odd-order Brillouin Stokes and anti-Stokes lines are generated. The laser is room temperature stable, tunable over 50 nm wavelength range and has an optical signal to noise ratio of more than 30 dB at 1560 nm region. This Brillouin fiber laser can operate at any wavelength depending on the Brillouin pump (BP) wavelength used.  相似文献   

17.
A stable room-temperature multi-wavelength Brillouin–Raman fiber laser with a ring cavity configuration was proposed and experimentally investigated. An obvious suppressant effect for unstable mode hopping of multi-wavelength lasing oscillations induced by deeply saturated effect was observed in the ring cavity configuration. Stable room-temperature multi-wavelength lasing oscillations with more than 30 lasing lines and wavelength spacing of 0.076 nm were obtained with only 250 mW Raman pump power and a section of high nonlinear fiber with a length of 1.5 km. The lasing output is so stable that the maximum power fluctuations for the foremost three Stokes lines over more than 20 min of observation were less than 0.30 dB. The lasing stability of the laser was also compared with a linear cavity configuration with the same gain components and pump conditions. While using the linear laser cavity configuration, obvious mode hopping was observed. The minimum value of the maximum power fluctuations at all lasing lines over more than 10 min of observation was more than 0.90 dB.  相似文献   

18.
Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature.  相似文献   

19.
A tunable single-longitudinal-mode(SLM) semiconductor optical amplifier(SOA)-based fiber laser based on a dispersion-shifted fiber(DSF) is proposed and successfully demonstrated. SLM operation is obtained due to the spectral narrowing effect resulting from inverse four-wave mixing in a DSF. A tunable optical filter performs wavelength selection function. By inserting a length of DSF in the laser cavity, SLM lasing can possibly be obtained when laser oscillation is stably established after traveling through the DSF many roundtrips. Stable tunable SLM oscillation with a signal-to-noise ratio as high as 65 dB over a wavelength range of about 35 nm is achieved experimentally, and each spectral linewidth is less than 6.5 kHz.  相似文献   

20.
D. Chen  B. Sun  Y. Wei 《Laser Physics》2010,20(8):1733-1737
We propose a multi-wavelength laser source based on an enhanced four-wave-mixing (FWM) effect which is achieved when a highly nonlinear fiber (HNLF) and an Erbium-doped fiber amplifier (EDFA) are employed in a fiber loop. A multi-wavelength laser source with totally 28 new wavelengths and a wavelength spacing of 0.8 nm is demonstrated. The wavelength spacing of the proposed multi-wavelength laser source can be tuned from 0.1 to 5.0 nm, and output spectrum of the multi-wavelength laser source with the wavelength spacing of 0.4, 0.8, and 1.6 nm are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号