首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modulational instability and gap solitons are theoretically studied in the ferromagnetic films under a periodic magnetic field. By multiple scale expansion, the envelope soliton solutions are obtained naturally. Due to the periodic modulation of dispersion, the solitons may be pushed into the gap region. For the easy-axis magnetic film, the red-shift of frequency leads to a modulational instability in the bottom of band and generates a bright gap soliton. For the easy-plane case, the blue-shift leads to an instability in the top of band and a dark gap soliton emerges. The weak damping produces an attenuation factor and a small oscillation.  相似文献   

2.
We study the propagation of velocity-locked dark triplet solitons in the three wave resonant interaction model. The modulational instability of the plane wave background where the solitons sit prevents the long range propagation. However even a small second order dispersion proves to greatly reduce, or suppress, the modulational instability gain, allowing for effective stable soliton propagation.  相似文献   

3.
The dynamics of matter-wave solitons in Bose-Einstein condensates (BEC) is considerably affected by the presence of a thermal cloud and the dynamical depletion of the condensate. Our numerical results, based on the time-dependent Hartree-Fock-Bogoliubov theory, demonstrate the collapse of the attractively interacting BEC via collisional emission of atom pairs into the thermal cloud, which splits the (quasi-one-dimensional) BEC soliton into two partially coherent solitonic structures of opposite momenta. These incoherent matter waves are analogous to optical random-phase solitons.  相似文献   

4.
We propose the use of bright matter-wave solitons formed from Bose-Einstein condensates with attractive interactions to probe and study quantum reflection from a solid surface at normal incidence. We demonstrate that the presence of attractive interatomic interactions leads to a number of advantages for the study of quantum reflection. The absence of dispersion as the soliton propagates allows precise control of the velocity normal to the surface and for much lower velocities to be achieved. Numerical modelling shows that the robust, self-trapped nature of bright solitons leads to a clean reflection from the surface, limiting the disruption of the density profile and permitting accurate measurements of the reflection probability.  相似文献   

5.
Longhi S 《Optics letters》2003,28(23):2363-2365
Beam propagation in multimode graded-index parabolic optical fibers in the presence of group-velocity dispersion and Kerr nonlinearity is theoretically investigated. It is shown that a modulational instability arising from the periodic spatial focusing of the beam takes place regardless of the sign of fiber dispersion, leading to a highly nonlinear space-time dynamics and the generation of ultrashort optical pulses.  相似文献   

6.
We consider the motion of a matter-wave bright soliton under the influence of a cloud of thermal particles. In the ideal one-dimensional system, the scattering process of the quasiparticles with the soliton is reflectionless; however, the quasiparticles acquire a phase shift. In the realistic system of a Bose-Einstein condensate confined in a tight waveguide trap, the transverse degrees of freedom generate an extra nonlinearity in the system which gives rise to finite reflection and leads to dissipative motion of the soliton. We calculate the velocity and temperature-dependent frictional force and diffusion coefficient of a matter-wave bright soliton immersed in a thermal cloud.  相似文献   

7.
C. Wang  T.P. Horikis 《Physics letters. A》2010,374(37):3863-3868
We propose an experimentally relevant protocol for the controlled generation of matter-wave dark solitons in atomic Bose-Einstein condensates (BECs). In particular, using direct numerical simulations, we show that by switching-on a spatially inhomogeneous (step-like) change of the s-wave scattering length, it is possible to generate a controllable number of dark solitons in a quasi-one-dimensional BEC. A similar phenomenology is also found in the two-dimensional setting of “disk-shaped” BECs but, as the solitons are subject to the snaking instability, they decay into vortex structures. A detailed investigation of how the parameters involved affect the emergence and evolution of solitons and vortices is provided.  相似文献   

8.
Dust-acoustic (DA) waves (DAWs) and their modulational instability (MI) have been investigated theoretically in a plasma system consisting of inertial opposite polarity (positively and negatively) warm adiabatic charged dust grains as well as inertialess non-extensive q?distributed electrons and non-thermal ions. A nonlinear Schrödinger equation (NLSE) is derived by using the reductive perturbation method. It has been observed from the analysis of NLSE that the modulationally stable solitary DAWs give rise to the existence of dark envelope solitons, and that the modulationally unstable solitary DAWs give rise to the existence of bright envelope solitons or rogue structures. It is also observed for the fast mode of DAWs that the basic features (viz. stability of the DAWs, MI, growth rate, amplitude, and width of the DA rogue waves, etc.) are significantly modified by the related plasma parameters (viz. dust masses, dust charge state, non-extensive parameter q, and non-thermal parameter α). The results of our present investigation might be useful for understanding different nonlinear electrostatic phenomena in both space (viz. ionosphere and mesosphere) and laboratory plasmas (viz. high intensity laser irradiation and hot cathode discharge).  相似文献   

9.
Sk Golam Ali 《Annals of Physics》2009,324(6):1194-1210
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution they exhibit decay and revival.  相似文献   

10.
We investigate the dynamics of matter-wave solitons in the one-dimensional (1-D)Gross-Pitaevskii (GP) equation describing Bose-Einstein condensates (BECs) withtime-dependent scattering length in varying trapping potentials with feeding/loss term. Byperforming a modified lens-type transformation, we reduce the GP equation into a classicalnonlinear Schrödinger (NLS) equation with distributed coefficients and find its integrablecondition. Under the integrable condition, we apply the generalized Jacobian ellipticfunction method (GJEFM) and present exact analytical solutions which describe thepropagation of a bright and dark solitons in BECs. Their stability is examined usinganalytic method. The obtained exact solutions show that the amplitude of bright and darksolitons depends on the scattering length, while their motion and the total number of BECatoms depend on the external trapping potential. Our results also shown that the loss ofatoms can dominate the aggregation of atoms by the attractive interaction, and thus thepeak density can decrease in time despite that the strength of the attractive interactionis increased.  相似文献   

11.
《Physics letters. A》2006,352(3):210-215
We study the existence and stability of bright, dark, and gap matter-wave solitons in optical superlattices. Then, using these properties, we show that (time-dependent) “dynamical superlattices” can be used to controllably place, guide, and manipulate these solitons. In particular, we use numerical experiments to displace solitons by turning on a secondary lattice structure, transfer solitons from one location to another by shifting one superlattice substructure relative to the other, and implement solitonic “path-following”, in which a matter wave follows the time-dependent lattice substructure into oscillatory motion.  相似文献   

12.
We study the dynamics of bright solitons formed in a Bose-Einstein condensate with attractive atomic interactions perturbed by a weak bichromatic optical lattice potential. The lattice depth is a biperiodic function of time with a zero mean, which realizes a flashing ratchet for matter-wave solitons. We find that the average velocity of a soliton and the soliton current induced by the ratchet depend on the number of atoms in the soliton. As a consequence, soliton transport can be induced through scattering of different solitons. In the regime when matter-wave solitons are narrow compared to the lattice period the dynamics is well described by the effective Hamiltonian theory.  相似文献   

13.
We study the nonlinear dynamics of DNA which takes into account the twist-opening interactions due to the helicoidal molecular geometry. The small amplitude dynamics of the model is shown to be governed by a solution of a set of coupled nonlinear Schrödinger equations. We analyze the modulational instability and solitary wave solution in the case. On the basis of this system, we present the condition for modulation instability occurrence and attention is paid to the impact of the backbone elastic constant K. It is shown that high values of K extend the instability region. Through the Jacobian elliptic function method, we derive a set of exact solutions of the twist-opening model of DNA. These solutions include, Jacobian periodic solution as well as kink and kink-bubble solitons.  相似文献   

14.
T MITHUN  K PORSEZIAN 《Pramana》2014,82(2):307-312
We numerically observe the effect of homogeneous magnetic field on the modulationally stable case of polar phase in F = 2 spinor Bose-Einstein condensates (BECs). Also we investigate the modulational instability of uniaxial and biaxial (BN) states of polar phase. Our observations show that the magnetic field triggers the modulational instability and demonstrate that irrespective of the magnetic field effect the uniaxial and biaxial nematic phases show modulational instability.  相似文献   

15.
The modulational instability of ion-acoustic waves in a collisionless plasma is studied taking into account the effect of ion temperature. It is found that the critical wavenumber is strongly dependent upon the ion temperature. In the limiting case of vanishing ion temperature, we recover the result that the modulational instability sets in fork>k c, where the critical wavenumber isk c=1.47.  相似文献   

16.
We consider a one-dimensional model of a two-component Bose–Einstein condensate in the presence of periodic external potentials of opposite signs, acting on the two species. The interaction between the species is attractive, while intra-species interactions may be attractive too [the system of the bright–bright (BB) type], or of opposite signs in the two components [the gap–bright (GB) type]. We identify the existence and stability domains for soliton complexes of the BB and GB types. The evolution of unstable solitons leads to the establishment of oscillatory states. The increase of the strength of the nonlinear attraction between the species results in symbiotic stabilization of the complexes, despite the fact that one component is centered around a local maximum of the respective periodic potential.  相似文献   

17.
We consider the wind-forced nonlinear Schrödinger (NLS) equation obtained in the potential flow framework when the Miles growth rate is of the order of the wave steepness. In this case, the form of the wind-forcing terms gives rise to the enhancement of the modulational instability and to a band of positive gain with infinite width. This regime is characterised by the fact that the ratio between wave momentum and norm is not a constant of motion, in contrast to what happens in the standard case where the Miles growth rate is of the order of the steepness squared.  相似文献   

18.
We investigate effects of the application of a kick to one-dimensional matter-wave solitons in a self-attractive Bose-Einstein condensate trapped in an optical lattice. The resulting soliton’s dynamics is studied within the framework of the time-dependent nonpolynomial Schrödinger equation. The crossover from the pinning to quasi-free motion crucially depends on the size of the kick, strength of the self-attraction, and parameters of the optical lattice.  相似文献   

19.
Shu-Wen Guan 《中国物理 B》2022,31(8):80506-080506
We investigate the oscillation periods of bright soliton pair or vector bright soliton pair in harmonic potentials. We demonstrate that periods of low-speed solitons are greatly affected by the position shift during their collisions. The modified oscillation periods are described by defining a characterized speed, with the aid of asymptotic analysis on related exact analytic soliton solutions in integrable cases. The oscillation period can be used to distinguish the inter- and intra-species interactions between solitons. However, a bright soliton cannot oscillate in a harmonic trap, when it is coupled with a dark soliton (without any trapping potentials). Interestingly, it can oscillate in an anti-harmonic potential, and the oscillation behavior is explained by a quasi-particle theory. The modified period of two dark-bright solitons can be also described well by the characterized speed. These results address well the effects of position shift during soliton collision, which provides an important supplement for previous studies without considering phase shift effects.  相似文献   

20.
The nonlinear lattice — a new and nonlinear class of periodic potentials — was recently introduced to generate various nonlinear localized modes. Several attempts failed to stabilize two-dimensional (2D) solitons against their intrinsic critical collapse in Kerr media. Here, we provide a possibility for supporting 2D matter-wave solitons and vortices in an extended setting — the cubic and quintic model — by introducing another nonlinear lattice whose period is controllable and can be different from its cubic counterpart, to its quintic nonlinearity, therefore making a fully “nonlinear quasi-crystal”.A variational approximation based on Gaussian ansatz is developed for the fundamental solitons and in particular, their stability exactly follows the inverted Vakhitov–Kolokolov stability criterion, whereas the vortex solitons are only studied by means of numerical methods. Stability regions for two types of localized mode — the fundamental and vortex solitons — are provided. A noteworthy feature of the localized solutions is that the vortex solitons are stable only when the period of the quintic nonlinear lattice is the same as the cubic one or when the quintic nonlinearity is constant, while the stable fundamental solitons can be created under looser conditions. Our physical setting (cubic-quintic model) is in the framework of the Gross–Pitaevskii equation or nonlinear Schrödinger equation, the predicted localized modes thus may be implemented in Bose–Einstein condensates and nonlinear optical media with tunable cubic and quintic nonlinearities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号