首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hartree-Fock paradigm of bilayer quantum Hall states with finite tunneling at filling factor nu=1 has full pseudospin ferromagnetic order with all the electrons in the lowest symmetric Landau level. Inelastic light scattering measurements of low energy spin excitations reveal major departures from the paradigm at relatively large tunneling gaps. The results indicate the emergence of a novel correlated quantum Hall state at nu=1 characterized by reduced pseudospin order. Marked anomalies occur in spin excitations when pseudospin polarization collapses by application of in-plane magnetic fields.  相似文献   

2.
The frictional drag between parallel two-dimensional electron systems has been measured in a regime of strong interlayer correlations. When the bilayer system enters the excitonic quantized Hall state at total Landau level filling factor nu(T) = 1, the longitudinal component of the drag vanishes but a strong Hall component develops. The Hall drag resistance is observed to be accurately quantized at h/e(2).  相似文献   

3.
Bilayer quantum Hall systems have a broken symmetry ground state at a filling factor which can be viewed either as an excitonic superfluid or as a pseudospin ferromagnet. We present a theory of interlayer transport in quantum Hall bilayers that highlights remarkable similarities and critical differences between transport in Josephson junction and ferromagnetic metal spin-transfer devices. Our theory is able to explain the size of the large but finite low-bias interlayer conductance and the voltage width of this collective transport anomaly.  相似文献   

4.
We predict the existence of a three-dimensional quantum Hall effect plateau in a graphite crystal subject to a magnetic field. The plateau has a Hall conductivity quantized at 4e2/variant Planck's over 2pi 1/c0 with c0 the c-axis lattice constant. We analyze the three-dimensional Hofstadter problem of a realistic tight-binding Hamiltonian for graphite, find the gaps in the spectrum, and estimate the critical value of the magnetic field above which the Hall plateau appears. When the Fermi level is in the bulk Landau gap, Hall transport occurs through the appearance of chiral surface states. We estimate the magnetic field necessary for the appearance of the effect to be 15.4 T for electron carriers and 7.0 T for holes.  相似文献   

5.
We study the competition between the long-range Coulomb interaction, disorder scattering, and lattice effects in the integer quantum Hall effect (IQHE) in graphene. By direct transport calculations, both nu=1 and nu=3 IQHE states are revealed in the lowest two Dirac Landau levels. However, the critical disorder strength above which the nu=3 IQHE is destroyed is much smaller than that for the nu=1 IQHE, which may explain the absence of a nu=3 plateau in recent experiments. While the excitation spectrum in the IQHE phase is gapless within numerical finite-size analysis, we do find and determine a mobility gap, which characterizes the energy scale of the stability of the IQHE. Furthermore, we demonstrate that the nu=1 IQHE state is a Dirac valley and sublattice polarized Ising pseudospin ferromagnet, while the nu=3 state is an xy plane polarized pseudospin ferromagnet.  相似文献   

6.
The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. The existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2(e/4pi). The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.  相似文献   

7.
We report on the dramatic evolution of the quantum Hall ferromagnet in the fractional quantum Hall regime at nu=2/5 filling. A large enhancement in the characteristic time scale gives rise to a dynamical transition into a novel quantized Hall state. The observed Hall state is determined to be a zero-temperature phase distinct from the spin-polarized and spin-unpolarized nu=2/5 fractional quantum Hall states. It is characterized by a strong temperature dependence and puzzling correlation between temperature and time.  相似文献   

8.
We present a theoretical study of gap opening in the zeroth Landau level in gapped graphene as a result of pseudo-Zeeman interaction. The applied magnetic field couples with the valley pseudospin degree of freedom of the charge carriers leading to the pseudo-Zeeman interaction. To investigate its role in transport at the charge neutrality point (CNP), we study the integer quantum Hall effect in gapped graphene in an angular magnetic field in the presence of pseudo-Zeeman interaction. Analytical expressions are derived for the Hall conductivity using the Kubo-Greenwood formula. We also determine the longitudinal conductivity for elastic impurity scattering in the first Born approximation. We show that pseudo-Zeeman splitting leads to a minimum in the collisional conductivity at high magnetic fields and a zero plateau in the Hall conductivity. Evidence for activated transport at CNP is found from the temperature dependence of the collisional conductivity.  相似文献   

9.
In this Letter we suggest a realization of the SU(N) Kondo effect, using quantum dots at strong magnetic field. We propose using edge states of the quantum Hall effect as pseudospin that interact with multiple quantum dots structures. In the suggested realization one can access each pseudospin separately and hence may perform a set of experiments that were impossible until now. We focus on the realization of SU(2) and SU(3) Kondo effects and find in the unitary limit a conductivity of 3/4 quantum conductance in the SU(3) case.  相似文献   

10.
Magnetotransport properties are investigated for a high mobility Si two-dimensional electron system in the vicinity of a Landau level crossing point. At low temperatures, the resistance peak having a strong anisotropy shows large hysteresis which is attributed to Ising quantum Hall ferromagnetism. The peak is split into two peaks in the paramagnetic regime. A mean field calculation for the peak positions indicates that electron scattering is strong when the pseudospin is partially polarized. We also study the current-voltage characteristics which exhibit a wide voltage plateau.  相似文献   

11.
We extend the composite boson theory to study slightly imbalanced bilayer quantum Hall systems. In the global U(1) symmetry breaking excitonic superfluid side, as the imbalance increases, the system supports continuously changing fractional charges. In the translational symmetry breaking pseudospin density wave (PSDW) side, there are two quantum phase transitions from the commensurate PSDW to an incommensurate PSDW and then to the excitonic superfluid state. We compare our theory with experimental data and also the previous microscopic calculations.  相似文献   

12.
Hartree–Fock theory predicts a stripe-like ground state for the two-dimensional electron gas in a bilayer quantum Hall system in a quantizing magnetic field at filling factor 4N+1 (with N>0). This stripe state contains quasi-1D linear coherent regions where electrons are delocalized across both wells and which support low-energy collective excitations in the form of phonons and pseudospin waves. We have recently computed the dispersion relation of these low-energy modes in the generalized random phase approximation. In this work, we propose an effective pseudospin model in which the stripe state is modeled as an array of coupled 1D anisotropic XY systems. The coupling constants and stiffness of our model are extracted from the density and pseudospin response functions computed in the GRPA.  相似文献   

13.
We study the charge transport of the noninteracting electron gas in a two-dimensional quantum Hall system with Anderson-type impurities at zero temperature. We prove that there exist localized states of the bulk order in the disordered-broadened Landau bands whose energies are smaller than a certain value determined by the strength of the uniform magnetic field. We also prove that, when the Fermi level lies in the localization regime, the Hall conductance is quantized to the desired integer and shows the plateau of the bulk order for varying the filling factor of the electrons rather than the Fermi level.  相似文献   

14.
《Nuclear Physics B》1995,455(3):505-521
The role of edge states in phenomena like the quantum Hall effect is well known, and the basic physics has a wide field-theoretic interest. In this paper we introduce a new model exhibiting quantum Hall-like features. We show how the choice of boundary conditions for a one-particle Schrödinger equation can give rise to states localized at the edge of the system. We consider both the example of a free particle and the more involved example of a particle in a magnetic field. In each case, edge states arise from a non-trivial scaling limit involving the boundary condition, and chirality of the boundary condition plays an essential role. Second quantization of these quantum mechanical systems leads to a multi-particle ground state carrying a persistent current at the edge. We show that the theory quantized with this vacuum displays an “anomaly” at the edge which is the mark of a quantized Hall conductivity in the presence of an external magnetic field. These models therefore possess characteristics which make them indistinguishable from the quantum Hall effect at macroscopic distances. We also offer interpretations for the physics of such boundary conditions which may have a bearing on the nature of the excitations in these models.  相似文献   

15.
We construct a quantum Ginsburg-Landau theory to study the quantum phase transition from the excitonic superfluid to a possible pseudospin density wave (PSDW) at some intermediate distances driven by the magnetoroton minimum collapsing at a finite wave vector. We explicitly show that the PSDW takes a square lattice structure. We suggest the existence of zero-point quantum fluctuation generated vacancies in the PSDW and that correlated hopping of vacancies in the active and passive layers in the PSDW state leads to very large and temperature dependent drag consistent with the experimental data. Comparisons with previous numerical calculations are made. Further experimental implications are given.  相似文献   

16.
In quantum Hall systems with two narrow constrictions, tunneling between opposite edges can give rise to quantum interference and Aharonov-Bohm-like oscillations of the conductance. When there is an integer quantized Hall state within the constrictions, a region between them, with higher electron density, may form a compressible island. Electron tunneling through this island can lead to residual transport, modulated by Coulomb-blockade-type effects. We find that the coupling between the fully occupied lower Landau levels and the higher-partially occupied level gives rise to flux subperiods smaller than one flux quantum. We generalize this scenario to other geometries and to fractional quantum Hall systems, and compare our predictions to experiments.  相似文献   

17.
We study the plateaux of the integer quantum Hall resistance in a bilayer electron system in tilted magnetic fields. In a narrow range of tilt angles and at certain magnetic fields, the plateau level deviates appreciably from the quantized value with no dissipative transport emerging. A qualitative account of the effect is given in terms of decoupling of the edge states corresponding to different electron layers/Landau levels.  相似文献   

18.
We show that the particle-hole conjugate of the Pfaffian state-or "anti-Pfaffian" state-is in a different universality class from the Pfaffian state, with different topological order. The two states can be distinguished easily by their edge physics: their edges differ in both their thermal Hall conductance and their tunneling exponents. At the same time, the two states are exactly degenerate in energy for a nu=5/2 quantum Hall system in the idealized limit of zero Landau level mixing. Thus, both are good candidates for the observed sigma_{xy}=5/2(e;{2}/h) quantum Hall plateau.  相似文献   

19.
We theoretically show that spontaneously interlayer-coherent bilayer quantum Hall droplets should allow robust and fault-tolerant pseudospin quantum computation in semiconductor nanostructures with voltage-tuned external gates providing qubit control and a quantum Ising Hamiltonian providing qubit entanglement. Using a spin-boson model, we estimate decoherence to be small (approximately 10(-5)).  相似文献   

20.
We propose that a pseudospin ferromagnetic (i.e., interwire coherent) state can exist in a system of two parallel wires of finite width in the presence of a perpendicular magnetic field. This novel quantum many-body state appears when the interwire distance decreases below a certain critical value which depends on the magnetic field. We determine the phase boundary of the ferromagnetic phase by analyzing the softening of the spin-mode velocity using the bosonization approach. We also discuss the signatures of this state in tunneling and Coulomb drag experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号