首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that, with increasing randomness, the spectral gap in a 2D Mott-Hubbard insulator is destroyed first at a disorder V(c1), while antiferromagnetism persists up to a higher V(c2). Most unexpectedly, between V(c1) and V(c2) the system is metallic and is sandwiched between the Mott insulator below V(c1) and the Anderson insulator above V(c2). The metal is formed when the spectral gap gets destroyed locally in regions where the disorder potential is high enough to overcome the interelectron repulsion. This generates puddles with enhanced charge fluctuations that percolate with increasing disorder, resulting in a spatially inhomogeneous metallic phase.  相似文献   

2.
3.
4.
The localization length λ for a disordered linear chain is derived in terms of the density of states. The relationship of λ to other localization criteria and the d.c. conductivity is discussed.  相似文献   

5.
We experimentally investigate the evolution of linear and nonlinear waves in a realization of the Anderson model using disordered one-dimensional waveguide lattices. Two types of localized eigenmodes, flat-phased and staggered, are directly measured. Nonlinear perturbations enhance localization in one type and induce delocalization in the other. In a complementary approach, we study the evolution on short time scales of delta-like wave packets in the presence of disorder. A transition from ballistic wave packet expansion to exponential (Anderson) localization is observed. We also find an intermediate regime in which the ballistic and localized components coexist while diffusive dynamics is absent. Evidence is found for a faster transition into localization under nonlinear conditions.  相似文献   

6.
Charge dynamics in a one-dimensional (1D) Mott insulator was investigated by fs pump-probe reflection spectroscopy on an organic charge-transfer compound, bis(ethylenedithio)tetrathiafulvalene-difluorotetracyanoquinodimethane (ET-F2TCNQ). The analyses of the transient reflectivity changes demonstrate that low-energy spectral weight induced by photocarrier doping is concentrated on a Drude component being independent of the doping density, and midgap state is never formed. Such phenomena can be explained by the concept of spin-charge separation characteristic of 1D correlated electron systems.  相似文献   

7.
A theory of the Anderson localization of light in randomly arranged ultrathin layers (quantum wells) uniform in lateral dimensions and possessing intrinsic optical resonances is put forward. To solve the multiple-scattering problem, a model of layers with a δ-function resonance dielectric polarization is proposed. The model is an electromagnetic counterpart of the electronic model of zero-radius potentials. Interlayer disorder is included under the assumption of a low average concentration of identical layers in order to calculate analytically the one-and two-photon characteristics of electromagnetic-radiation transport, in particular, the average energy density and the Anderson localization length of light. The analysis is carried out for a structure with randomly distributed quantum wells in which quasi-two-dimensional excitons of different quantum wells are in resonance while their wave functions do not overlap. It is shown that the average electromagnetic field propagates through this disordered structure in the form of polaritons but are produced in exciton reemission between quantum wells. The localization length of light in the polariton spectral region decreases substantially, because the scattering (reflection) of light by individual quantum wells grows near the excitonic resonance.  相似文献   

8.
We obtain an exact analytical solution to the problem of the enhanced backscattering of a short pulsed signal from a two- and three-dimensional medium with isotropically scattering centres. The angular spectrum is expressed in terms of the solution to the corresponding stationary problem. The intensity oscillations are shown to appear on the tails of the angular spectrum. The origin of these oscillations is associated with the ballistic phase shift between the interfering waves arriving at the detector. It is shown that the finiteness of the slab thickness influences the magnitude of the backscattering intensity and does not change the shape of the angular spectrum. The range of validity for the diffusion approximation is pointed out.

The results obtained in the paper also contain a generalization of the well known solution to the problem of incoherent transfer to a pulsed signal to the case of two-dimensional disordered media.  相似文献   

9.
The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on the length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using the density matrix renormalization group method. A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite-size effects, is proposed. This is used to extract the localization length as a function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.  相似文献   

10.
The dc and 9.2-GHz electrical resistivities and magnetoresistance observed in La1?xAxMnO3 crystals (A=Sr, Ce, x≤0.1) in the temperature interval 77–300 K are accounted for by the contributions due to carriers, both nonlocalized and localized in the valence-band tail and near the Fermi level. The localized-state tail extends to a depth of 0.15–0.25 eV inside the band gap, and the hopping activation energy varies from 0.06 to 0.15 eV, depending on the sample composition. Within the temperature region where magnetic ordering sets in, the variations of the electrical resistivity and magnetoresistance with temperature and magnetic field are caused by variations in the carrier mobility and concentration.  相似文献   

11.
The coherent dynamics of two interacting carriers in one-dimensional quantum dot arrays driven by oscillating electric fields is theoretically investigated with the help of numerical calculations. The coherent localization of two electrons and that of an electron–hole pair are studied in this paper. For the two-electron case, the dynamic localization of the electrons is achieved when the Coulomb interaction is large enough. In this coherent localization, the Coulomb repulsion helps the electrons to be localized. For an electron–hole pair, although the dynamic localization of the composite particle does not occur due to charge neutrality, a different type of coherent localization can occur. These phenomena are explained by the quasienergy spectra based on Floquet analysis.  相似文献   

12.
Numerical investigation of a random, one dimensional Kronig-Penny-like model is performed using long chains and large ensembles. Dependence of the inverse localization length α on randomness, irreproducibility of resistance measurements and the dependence of the standard deviation of α on α and the length of the chain were studied. For energies, E=k2 close to the zone boundary k=π, we have found α~(π-k).  相似文献   

13.
刘冬梅  韩鹏 《物理学报》2010,59(10):7066-7072
采用传输矩阵法研究了电磁波在由单负特异材料组成的一维无序扰动周期结构中的Anderson局域(Anderson Localization)行为,分别讨论了色散和非色散两种模型.结果发现,在对应周期结构的通带位置,无序的引入对局域长度的影响较大,而在带隙位置,影响较小,几乎可以忽略.该性质与我们曾讨论的随机结构有较明显不同.导致这种局域性质的主要原因应为,光在单负材料组成的系统中的传输主要依赖于两种单负材料间的界面.在无序扰动结构中,该界面数相对于周期结构并没有减少,因此对光的传输性质影响较小,而随机结构中  相似文献   

14.
Recent treatments of diffusion in a one-dimensional disordered lattice by Machta using a renormalization-group approach, and by Alexander and Orbach using an effective medium approach, lead to a frequency-dependent (or non-Markoffian) diffusion coefficient. Their results are confirmed by a direct calculation of the diffusion coefficient.Research supported by NSF Grant No. CHE 77-16308.  相似文献   

15.
We study the coherence and density modulation of a nonequilibrium exciton-polariton condensate in a one-dimensional valley with disorder. By means of interferometric measurements we evidence a modulation of the first-order coherence function and we relate it to a disorder-induced modulation of the condensate density, that increases as the pump power is increased. The nonmonotonic spatial coherence function is found to be the result of the strong nonequilibrium character of the one-dimensional system, in the presence of disorder.  相似文献   

16.
17.
We report a detailed numerical investigation on transverse localization of light in a 1D disordered lattice consisting of a large array of coupled waveguides in the presence of nonlinearity in the medium. Our study reveals that the presence of a focusing type of nonlinearity favors faster localization of light while a defocusing type of nonlinearity degrades the quality of localization. It is shown that presence of either of these could over-shadow localization of light unless the strength of disorder is sufficiently strong. Influence of the input beam width on propagation of light in such a disordered nonlinear medium has also been discussed. The present study should be useful in potential applications, in which one could exploit dominance of focusing nonlinearity on transverse localization of light in a disordered medium.  相似文献   

18.
We experimentally demonstrate coherent light scattering from an atomic Mott insulator in a two-dimensional lattice. The far-field diffraction pattern of small clouds of a few hundred atoms was imaged while simultaneously laser cooling the atoms with the probe beams. We describe the position of the diffraction peaks and the scaling of the peak parameters by a simple analytic model. In contrast to Bragg scattering, scattering from a single plane yields diffraction peaks for any incidence angle. We demonstrate the feasibility of detecting spin correlations via light scattering by artificially creating a one-dimensional antiferromagnetic order as a density wave and observing the appearance of additional diffraction peaks.  相似文献   

19.
We report momentum-resolved charge excitations in a one-dimensional (1D) Mott insulator studied using high resolution inelastic x-ray scattering over the entire Brillouin zone for the first time. Excitations at the insulating gap edge are found to be highly dispersive (momentum dependent) compared to excitations observed in two-dimensional Mott insulators. The observed dispersion in 1D cuprates ( SrCuO2 and Sr2CuO3) is consistent with charge excitations involving holons which is unique to spin-1/2 quantum chain systems. These results point to the potential utility of momentum-resolved inelastic x-ray scattering in providing valuable information about electronic structure of strongly correlated insulators.  相似文献   

20.
We study the diffusion of a quantum Brownian particle in a one-dimensional periodic potential with substitutional disorder. The particle is coupled to a dissipative environment, which induces a frictional force proportional to the velocity. The dynamics for arbitrary temperature is studied by using Feynman's influence-functional theory. We calculate the mobility to lowest order in the disorder and strength of the periodic potential. It is shown that for weak dissipation the linear mobility, which vanishes atT=0 due to localization effects, may exhibit a maximum and a subsequent minimum with increasing temperature. The relation to the diffusion of heavy particles in metals or doped semiconductors is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号