首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The paper presents an enhanced beam-theory (EBT) model of the mixed-mode bending (MMB) test, whereby the specimen is considered as an assemblage of two sublaminates partly connected by an elastic–brittle interface. Analytical expressions for the compliance, energy release rate, and mode mixity are deduced. A compliance calibration strategy enabling numerical or experimental evaluation of the interface elastic constants is also presented. Furthermore, analytical expressions for the crack length correction parameters—analogous to those given by the corrected beam-theory (CBT) model for unidirectional laminated specimens—are furnished for multidirectional laminated specimens, as well. Lastly, an example application to experimental data reduction is presented.  相似文献   

3.
4.
In several practical applications hot-finished steel pipe that exhibits Lüders bands is bent to strains of 2–3%. Lüders banding is a material instability that leads to inhomogeneous plastic deformation in the range of 1–4%. This work investigates the influence of Lüders banding on the inelastic response and stability of tubes under rotation controlled pure bending. Part I presents the results of an experimental study involving tubes of several diameter-to-thickness ratios in the range of 33.2–14.7 and Lüders strains of 1.8–2.7%. In all cases the initial elastic regime terminates at a local moment maximum and the local nucleation of narrow angled Lüders bands of higher strain on the tension and compression sides of the tube. As the rotation continues the bands multiply and spread axially causing the affected zone to bend to a higher curvature while the rest of the tube is still at the curvature corresponding to the initial moment maximum. With further rotation of the ends the higher curvature zone(s) gradually spreads while the moment remains essentially unchanged. For relatively low D/t tubes and/or short Lüders strains, the whole tube eventually is deformed to the higher curvature entering the usual hardening regime. Subsequently it continues to deform uniformly until the usual limit moment instability is reached. For high D/t tubes and/or materials with longer Lüders strains, the propagation of the larger curvature is interrupted by collapse when a critical length is Lüders deformed leaving behind part of the structure essentially undeformed. The higher the D/t and/or the longer the Lüders strain is, the shorter the critical length. Part II presents a numerical modeling framework for simulating this behavior.  相似文献   

5.
In this paper, an anisotropic damage model is established in strain space to describe the behaviour of geomaterials under compression-dominated stress fields. The research work focuses on rate-independent and small-deformation behaviour during isothermal processes. It is emphasized that the damage variables should be defined microstructurally rather than phenomenologically for geomaterials, and a second-order fabric tensor is chosen as the damage variable. Starting from it, a one-parameter damage-dependent elasticity tensor is deduced based on tensorial algebra and thermodynamic requirements ; a fourth-order damage characteristic tensor, which determines anisotropic damaging, is deduced within the framework of Rice, 1971 normality structure in Part II of this paper. An equivalent state is developed to exclude the macroscopic stress⧹strain explicitly from the relevant constitutive equations. Finally, some numerical results are worked out to illustrate the mechanical behaviour of this model.  相似文献   

6.
7.
The mathematical model described in Part I was solved using “influence line method” combining analytical method and finite element method. Many important aspects of microcirculatory dynamics were analyzed and discussed. It show that interstitial fluid pressure changes its sign twice within one arteriolar vasomotion period and it is therefore not important that interstitial fluid pressure is a little higher or lower than atmospheric pressure; arteriolar vasomotion can periodically result in lymph formation and interstitial total pressure plays an important role in this procedure; local regulation of microcirculation can meet metabolic need some extent in the form of dynamic equilibrium. The property of arteriole as a “resistant vessel” and the efficiency of microvascular network as heat exchanger are also shown. These results show that the comprehensive mathematical model developed in Part I is physiologically resonable. Foundation item: the Natural Science Foundation of Sichuan Province, P R China Biography: Guo Zhongsan (1947-)  相似文献   

8.
The screen surface load (SSL) caused by granular materials is an important factor affecting the structural performance of vibrating screen. Based on virtual experiment, a multi-objective collaborative optimization method is proposed to control the SSL under high screening efficiency (SE) in this work. Firstly, a DEM model was established to study the influence of process parameters on SE and SSL. Secondly, the NSGA-II (Non-dominated Sorting Genetic Algorithm) was employed to optimize the screening parameters with both SE and SSL as targets. The optimization method proves to be effective implementing on a linear vibrating screening. With SE equals to 98.5%, the SSL optimizable range is 39.2%. While compromising the SE to 88.7%, the SSL optimizable range improves to 48.6%. The result shows that the collaborative optimization could effectively control the SSL while maintaining a high SE, which is of great significance to improve the service life of screen surface and screen body.  相似文献   

9.
The US army along with NATO member and partner nations’ militaries need an accurate software tool for predicting ground vehicle mobility (such as speed-made-good and fuel-consumption) on world-wide terrains where military vehicles may be required to operate. Currently, the NATO Reference Mobility Model (NRMM) is the only NATO recognized tool for assessing ground vehicle mobility. NRMM was developed from the 1960s to the 1980s and relies on steady-state empirical formulas which may not be accurate for new military ground vehicles. A NATO research task group (RTG-248) was established from 2016 to 2018 to develop the NG-NRMM (next-generation NRMM) software tool requirements and an NG-NRMM prototype which uses high-fidelity “simple” or “complex” terramechanics models for the terrain/soil along with modern 3D multibody dynamics software tools for modeling the vehicle. NG-NRMM Complex Terramechanics (CT) models are those that utilize full 3D soil models capable of predicting the 3D soil reaction forces on the vehicle surfaces (including tires, tracks, legs, and under body) and the 3D flow and deformation of the soil including both elastic and plastic deformation under any 3D loading condition. In Part 1 of this paper, an overview of the full spectrum of terramechanics models from the highest fidelity to the lowest fidelity is presented along with a literature review of CT ground vehicle mobility models.  相似文献   

10.
The influence of impact velocity and material characteristics on the dynamic buckling response of circular shells subjected to axial impact loads is studied. It is shown experimentally that the critical buckling length, which marks the transition between progressive and global buckling of aluminium alloy circular tubes, is significantly influenced by the axial impact velocity. A finite element analysis is undertaken to further explore the effects of material yield stress, strain hardening and strain rate sensitivity on the transition phenomenon. It is observed that circular tubes made of ductile alloys with a high yield stress and low strain hardening characteristics have a better performance as energy absorbers than tubes made of alloys with a low yield stress and high strain hardening characteristics. Theoretical analysis of some particular features of the dynamic buckling transition is presented in Part II [International Journal of Solids and Structures (2004)].  相似文献   

11.
The rapidly increasing technological importance of composite materials and composite structures is leading to the development of new, more advanced models of their actual response to mechanical and thermal loads. This in turn results in the development of new experimental and analytical methods for determination of the mechanical and thermal responses of such structures and materials to various loads. In this respect the reliability and the predictive power of various methods and techniques of stress analysis become very important since all the analytical, experimental and numerical methods used for the determination, prediction and optimization of the actual mechanical responses of composite structures and materials are based on the concepts of strain and stress. Because of the inherently three-dimensional stress and strain states in composite materials and structures and the wide use of viscoelastic polymers as the matrix and some reinforcing fiber materials, a more rigorous type of modelling than had been common in the past is needed of all the involved physical phenomena which influence the strain and stress states at the local and global levels. Also, a more rigorous analysis of practical consequences of the physical and mathematical simplifications is required to assure reliability and accuracy of various methods of stress analysis. The influence of the above-mentioned factors on the reliability and applicability of analytical and experimental procedures is illustrated by examples of actual material responses.Part 2 of this paper presents theories and techniques of three new methods of strain/stress analysis which have been developed on the basis of comprehensive physical models of involved phenomena: the isodyne, strain gradient and thermoelastic effect methods. Presented examples illustrate the efficacy of these methods.  相似文献   

12.
An analysis for an impact system is presented. The results are then used to interpret the test data from dynamic separation of resistance spot welded joints. In this Part I of the investigation emphasis is placed on the design consideration, development of a test system and verification of the design from actual test data obtained from the test system. In addition, the inertia effect of a generic dynamic system is analyzed using the principle of rigid body dynamics. It is shown that the load recorded by a load cell could include both the load experienced by the test specimen and the inertia force generated from the mass and acceleration between the specimen and the load cell, when the load cell is placed on the fixed side of the test specimen. Impact fixtures designed for spot weld strength testing are then studied for the inertia effect.  相似文献   

13.
The method of the implicit standard material has allowed the formulation of a consistent mathematical model of the boundary value problem for the non-associated plasticity of soil. The mean accomplished steps are the achievement of the bipotential function, the recovering of the stress–strain relationship under a normality rule, introduction of the bifunctional and the proof of the solution existence. Here the mathematical model is discretized by the finite element method. First, the stress update scheme was formulated, the tangent matrix is explicitly derived and then the non-linear system is solved by the Newton–Raphson method where a new algorithm using a symmetrical tangent matrix is improved. This is in opposition to conventional non-associated plasticity, which uses a non-symmetric tangent matrix. Through the numerical examples we show the feasibility and the efficiency of the algorithm. It is also seen that we perform some studies of the numerical solutions, particularly the comparison between associated and non-associated limit load.  相似文献   

14.
In this work, the response of a single-degree-of-freedom shape memory oscillator subjected to the excitation harmonic has been investigated. Equation of motion is formulated assuming a polynomial constitutive model to describe the restitution force of the oscillator. Here the method of multiple scales is used to obtain an approximate solution to the equations of the motion describing the modulation equations of amplitude and phase, and to investigate theoretically its stability. This work is presented in two parts. In Part I of this study we showed the modeling of the problem where the free vibration of the oscillator at low temperature is analyzed, where martensitic phase is stable. Part I also presents the investigation dynamics of the primary resonance of the pseudoelastic oscillator. Part II of the work is focused on the study in the secondary resonance of a pseudoelastic oscillator using the model developed in Part I. The analysis of the system in Part I as well as in Part II is accomplished numerically by means of phase portraits, Lyapunov exponents, power spectrum and Poincare maps. Frequency-response curves are constructed for shape memory oscillators for various excitation levels and detuning parameter. A rich class of solutions and bifurcations, including jump phenomena and saddle-node bifurcations, is found.  相似文献   

15.
The soil is characterized by the influence of the hydrostatic stress, which leads to a yield surface with a shape of a pyramid for Mohr–Coulomb criteria and a shape of a cone for Drucker–Prager one. These materials are also characterized by a non-associated plasticity where the plastic yielding rule does not follow the normality rule. The usual mechanical models use two independent functions to describe this particular collapse. Unfortunately, this manner broke the model formulation. The purpose of this work is to present a consistent formulation of the non-associated plasticity of soil. The frame of the mathematical analysis is the concept of the implicit standard material. The cornerstone of this new idea is the construction of a single function called the bipotential playing in the same time the roles of the yield surface and the plastic potential. The bipotential concept is then intended to involve the constitutive law, cover the normality rule even for the non-associated soil and the proof of the solution existence. The formulation was initially performed for the case of a regular point out of the cone apex and in present, it is extended to the irregular point located at the apex. The paper presents firstly the implicit standard material method. Then, the methodology to build a full model for the boundary value problem is detailed. Particular expressions and relations are sufficiently explained and discussed. Attention is made to the evolution problem and the variational principles related to the elastic–plastic behavior.  相似文献   

16.
This second part of the two-part study is devoted to the numerical Limit Analysis of a hollow sphere model with a Mohr–Coulomb matrix and its use for the assessment of theoretical results. Brief background and fundamental of the static and kinematic approaches in the context of numerical limit analysis are first recalled. We then present the hollow sphere model, together with its axisymmetric FEM discretization and its mechanical position. A conic programming adaptation of a previous iterative static approach, based on a piecewise linearization (PWL) of the plasticity criterion, was first realized. Unfortunately, the resulting code, no more than the PWL one, did not allow sufficiently refined meshes for loss of convergence of the conic optimizer. This problem was solved by using the projection algorithm of Ben Tal and Nemriovski (BTN) and the (interior point) linear programming code XA. For the kinematic approach, a first conic adaptation appeared also inefficient. Then, an original mixed (but fully kinematic) approach dedicated to the general Mohr–Coulomb axisymmetric problem was elaborated. The final conic mixed code appears much more robust than the classic one when using the conic code MOSEK, allowing us to take into account refined numerical meshes. After a fine validation in the case of spherical cavities and isotropic loadings (for which the exact solution is known) and comparison to previous (partial) results, numerical lower and upper bounds (a posteriori verified) of the macroscopic strength are provided. These bounds are used to assess and validate the theoretical results of the companion (part I) paper. Effects of the friction angle as well as that of the porosity are illustrated.  相似文献   

17.
In the first part of this paper, a universal fluid velocity based algorithm for simulating hydraulic fracture with leak-off, previously demonstrated for the PKN and KGD models, is extended to obtain solutions for a penny-shaped crack. The numerical scheme is capable of dealing with both the viscosity and toughness dominated regimes, with the fracture being driven by a power-law fluid. The computational approach utilizes two dependent variables; the fracture aperture and the reduced fluid velocity. The latter allows for the application of a local condition of the Stefan type (the speed equation) to trace the fracture front. The obtained numerical solutions are carefully tested using various methods, and are shown to achieve a high level of accuracy.  相似文献   

18.
In this paper, we first describe a homogenization methodology with the aim of establishing strain gradient constitutive relations for heterogeneous materials. The methodology presented in this work includes two main steps. The first one is the construction of the average strain-energy density for a well-chosen RVE by using a homogenization technique. The second one is the transformation of the obtained average strain-energy density to that for the continuum. An important characteristic of this method is its self-consistency with respect to the choice of the RVE: the strain gradient constitutive law built by using the present method is independent of the size and the form of the RVE. In the frame of this homogenization procedure, we have constructed a strain gradient constitutive relation for a two-dimensional elastic material with many microcracks by adopting the self-consistent scheme. It was shown that the effective behavior of cracked solids depends not only on the crack density but also on the average crack size with which the strain gradient is associated. The proposed constitutive relation provides a starting point for the development of an evolution law of damage including strain gradient effect, which will be presented in the second part of this work.  相似文献   

19.
Screw conveyors, widely used devices for transporting bulk materials, play an irreplaceable role in the modern industrial system. Despite of their traditional advantages, designers of screw conveyors still heavily rely on their own country’s experiments and standards, which are closely related to empirical data. Therefore, the same conveying task often results in different designs. This work aims to compare the design standards of screw conveyors in China, Germany and the USA. Based on related standards acquired from renowned associations in the three countries, the similarities and particularities of these design guidances are compared. With preforming the geometrical and operational designs for horizontal, slightly inclined and vertical conveyance of three representative bulk solids (barley, lignite, sand), the advantages and disadvantages of these semi-empirical designs are comprehensively presented. Furthermore, the potential influence of empirical coefficients, which are not explicitly documented, are extensively discussed. By analysing all outcomes, the compatibility and applicability of each standard are qualitatively assessed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号