首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The ground state of the two-dimensional electron gas near nu=1 is investigated by inelastic light scattering measurements carried down to very low temperatures. Away from nu=1, the ferromagnetic spin wave collapses and a new low-energy spin wave emerges below the Zeeman gap. The emergent spin wave shows soft behavior as its energy increases with temperature and reaches the Zeeman energy for temperatures above 2 K. The observed softening indicates an instability of the two-dimensional electron gas towards a magnetic order that breaks spin rotational symmetry. We discuss our findings in light of the possible existence of a Skyrme crystal.  相似文献   

2.
We describe measurements of spin dynamics in the two-dimensional electron gas in GaAs/GaAlAs quantum wells. Optical techniques, including transient spin-grating spectroscopy, are used to probe the relaxation rates of spin polarization waves in the wave vector range from zero to 6x10(4) cm-1. We find that the spin polarization lifetime is maximal at a nonzero wave vector, in contrast with expectations based on ordinary spin diffusion, but in quantitative agreement with recent theories that treat diffusion in the presence of spin-orbit coupling.  相似文献   

3.
We calculate the spectrum of collective excitations of the XY spiral state prepared adiabatically or suddenly from a uniform ferromagnetic F=1 condensate. For spiral wave vectors past a critical value, spin wave excitation energies become imaginary indicating a dynamical instability. We construct phase diagrams as functions of spiral wave vector and quadratic Zeeman energy.  相似文献   

4.
In 1962, Overhauser showed that within Hartree-Fock (HF) the electron gas is unstable to a spin-density wave state. Determining the true HF ground state has remained a challenge. Using numerical calculations for finite systems and analytic techniques, we study the unrestricted HF ground state of the three-dimensional electron gas. At high density, we find broken spin symmetry states with a nearly constant charge density. Unlike previously discussed spin wave states, the observed wave vector of the spin-density wave is smaller than 2k(F). The broken-symmetry state originates from pairing instabilities at the Fermi surface, a model for which is proposed.  相似文献   

5.
We study spin longitudinal and transverse linear response of the 3-dimensional electron gas, metal clusters and quantum dots. When the systems are spin unpolarized in the ground state, a low energy collective state emerges in finite size systems due to the discrete shell structure, whereas it is absent in the bulk due to the Landau damping. In the case of spin polarization of the ground state a collective state is present also in the bulk and a family of new collective states appears in finite size systems. Presented by E. Lipparini at the International Conference on “Atomic Nuclei and Metallic Clusters”, Prague, September 1–5, 1997.  相似文献   

6.
In a spin‐polarized electron gas, Coulomb interaction couples the spin and motion degrees of freedom to build propagating spin waves. The spin wave stiffness Ssw quantifies the energy cost to trigger such excitation by perturbing the kinetic energy of the electron gas (i.e. putting it in motion). Here we introduce the concept of spin–orbit stiffness, Sso, as the energy necessary to excite a spin wave with a spin polarization induced by spin–orbit coupling. This quantity governs the Coulombic enhancement of the spin–orbit field acting of the spin wave. First‐principles calculations and electronic Raman scattering experiments carried out on a model spin‐polarized electron gas, embedded in a CdMnTe quantum well, demonstrate that Sso = Ssw. Through optical gating of the structure, we demonstrate the reproducible tuning of Sso by a factor of 3, highlighting the great potential of spin–orbit control of spin waves in view of spintronics applications. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

7.
We have derived an expression for the dynamical spin susceptibility of a hole-doped high-temperature superconductor taking into account a strong correlation between the magnetization of spins of the localized and itinerant electrons. This formula has been used to calculate the imaginary part of the susceptibility as a function of the frequency and wave vector. The results are compared to experimental data on the inelastic neutron scattering in compounds of the YBa2Cu3O6+y type. A peak in the scattering intensity observed at an energy of about 40 meV in the region of wave vectors Q = (π, π) and an arc-shaped dispersion relief are interpreted as manifestations of the collective spin excitations in the system, the energy of which falls within a superconducting gap (spin exciton). The U-shaped divergent relief observed in the neutron scattering intensity is assigned to collective short-rage-order spin oscillations.  相似文献   

8.
The g-factor enhancement of the spin-polarized two-dimensional electron gas was measured directly over a wide range of spin polarizations, using spin flip resonant Raman scattering spectroscopy on two-dimensional electron gases embedded in Cd(1-x)Mn(x)Te semimagnetic quantum wells. At zero Raman transferred momentum, the single-particle spin flip excitation, energy Z*, coexists in the Raman spectrum with the spin flip wave of energy Z, the bare giant Zeeman splitting. We compare the measured g-factor enhancement with recent spin-susceptibility enhancement theories and deduce the spin-polarization dependence of the mass renormalization.  相似文献   

9.
We have investigated the electron spin resonance at nonzero wave vector in GaAs single quantum wells by combining the virtues of high frequency surface acoustic wave generation to produce excitations with large wave numbers with a sensitive optical scheme to detect resonant absorption. The observed large deviations from the single particle Zeeman energy are attributed to the exchange interaction. The enhancement of the electronic g* factor is, however, substantially smaller compared with theoretical predictions for spin waves when adopting a bare Coulomb interaction potential.  相似文献   

10.
Direct electron spin resonance (ESR) on a high mobility two-dimensional electron gas in a single AlAs quantum well reveals an electronic g factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 G. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin-orbit interaction and a modulation of the electron wave vector caused by the microwave electric field. This contrasts markedly with conventional ESR that detects through the microwave magnetic field.  相似文献   

11.
《Physics letters. A》2019,383(24):2903-2907
In degenerate quantum plasma the energy behavior of electrostatic modes propagating perpendicular to the external magnetic field is studied by employing the separated spin evolution quantum hydrodynamic (SSE-QHD) model. This model reveals that spin electron cyclotron wave (SECW) appears additionally with the upper hybrid wave (UHW). In case of SECW, the curves for the energy flow speed at different levels of spin polarization effect flip over at a particular value of wave number. The spin polarization effect enhances the energy flow speed before this value of wave number and then suppresses it afterward. The energy flow speed is enhanced by spin polarization effect in the entire range of wave number for the propagation of UHW. The Bohm potential effect drastically increases the energy flow speed at high wave number domain in both the waves. This study may find its applications to understand the energy behavior inspin polarized solid state plasmas  相似文献   

12.
We report on energy loss experiments with 50 keV electrons transmitted through thin films of the metals Al, Mg, Li, Na, and K. The valence electrons of these materials behave like a gas of free electrons to a good approximation and, in particular, give rise to significant collective effects. Since these substances oxidize rapidly they were evaporated and studied in ultra high vacuum. The apparatus and the measurement technique are described. Measurements of loss spectra for different electron scattering angles yield the volume plasmon dispersion curve and the dependence of the damping of the volume plasmon on the wave vector. New experimental values of the energy and the half width of the plasma oscillations and the coefficients of dispersion and damping are given. In addition, the results of some measurements on surface plasmons are presented. There are significant deviations from the predictions of the simple electron gas model.  相似文献   

13.
The realm of high energy, large wave vector spin waves in ultrathin films and at surfaces is unexplored because a suitable method was not available up to now. We present experimental data for an 8 ML thick Co film deposited on Cu(001) which show that spin-polarized electron energy loss spectroscopy can be used to measure spin-wave dispersion curves of ultrathin ferromagnetic films up to the surface Brillouin zone boundary.  相似文献   

14.
In this paper the metamaterial properties of two-dimensional arrays of circular antidots (holes) embedded into a ferromagnetic medium of Permalloy are studied according to both micromagnetic and analytical calculations. The periodicity of the arrays and the diameters of the antidots are in the nanometric range. The collective mode dynamics is described by means of effective physical quantities for the scattering geometry with the external magnetic field applied perpendicularly to the Bloch wave vector in the antidot plane. As an example, the definition of an effective field, incorporating the demagnetizing effects due to the holes, permits to describe the dynamical properties of collective modes in terms of effective properties in the travelling regime. An effective wavelength and a small wave vector are introduced both for extended and localized magnonic modes. By means of these effective quantities it is shown that holes play the role of point defects affecting the spin dynamics in the microwave range. Relations between the effective wavelength and the Bloch wavelength and between the corresponding small wave vector and the Bloch wave vector are found. Some effective rules on the dynamic magnetization, based upon the effective wavelength and the corresponding small wave vector, are derived. An application that exploits the definition of the small wave vector is proposed and an experiment based upon the notion of effective wavelength and small wave vector is suggested.  相似文献   

15.
采用子能带模型,研究了有限温度情况下能带耦合对形成于液氦表面的准一维电子气体的集体激发的两类散射———带内散射和带间散射的影响。首先重点讨论了影响集体激发的重要因子———能量传播函数,得到了长波近似条件下的能量传播函数的普适表达式,然后在此基础上具体计算了三个子能带模型时的耦合散射谱,最后讨论了波矢、温度对耦合散射的影响。  相似文献   

16.
We use high-resolution inelastic neutron scattering to study the low-temperature magnetic excitations of the electron-doping superconductor Pr(0.88)LaCe(0.12)CuO(4-delta) (T(c) = 21 +/- 1 K) over a wide energy range (4 meV < or = homega < or = 330 meV). The effect of electron doping is to cause a wave vector (Q) broadening in the low-energy (homega < or = 80 meV) commensurate spin fluctuations at (0.5, 0.5) and to suppress the intensity of spin-wave-like excitations at high energies (homega > or = 100 meV). This leads to a substantial redistribution in the spectrum of the local dynamical spin susceptibility chi'(omega), and reveals a new energy scale similar to that of the lightly hole-doped YB2Cu3O(6.353) (T(c) = 18 K).  相似文献   

17.
Hyperfine interactions with randomly oriented nuclear spins present a fundamental decoherence mechanism for electron spin in a quantum dot, that can be suppressed by polarizing the nuclear spins. Here, we analyze an all-optical scheme that uses hyperfine interactions to implement laser cooling of quantum-dot nuclear spins. The limitation imposed on spin cooling by the dark states for collective spin relaxation can be overcome by modulating the electron wave function.  相似文献   

18.
建立了有限对一维铁磁性和非磁性层交错组成的周期系统, 应用布洛赫自旋波量子理论, 研究了该系统的基本性质及电子波函数散射特征对交错层数量依赖的关系. 研究发现: 在系统中电子波函数可表示为无限周期系统中转换矩阵特征向量的叠加或类布洛赫函数, 解此函数可得到任意层数系统的单色波散射的精确解. 在此基础上, 导出了电子波函数在周期系统中反射系数和透射系数对能量的依赖关系. 对光谱窗口的计算发现其势能和宽度几乎与全反射区域一样. 该系统由于高能量的传输和在电子自旋方向上对交换能的依赖而可能用于自旋滤波器. 关键词: 磁性多层膜 铁磁性和非磁性结构 电子散射 电子自旋滤波器  相似文献   

19.
Using the standard tight binding model of 2D graphite with short range electron repulsion, we predict a gapless spin-1, neutral collective mode branch below the particle-hole continuum with energy vanishing linearly with momenta at the Gamma and K points in the Brillouin zone. This spin-1 mode has a wide energy dispersion, 0 to approximately 2 eV, and is not Landau damped. The "Dirac cone spectrum" of electrons at the chemical potential of graphite generates our collective mode, so we call this "spin-1 zero sound" of the "Dirac sea." Epithermal neutron scattering experiments and spin polarized electron energy loss spectroscopy can be used to confirm and study our collective mode.  相似文献   

20.
It is shown that additional contributions both to current-induced spin orientation and to the spin Hall effect arise in quantum wells due to the gyrotropy of the structures. Microscopically, they are related to the basic properties of gyrotropic systems, namely, to linearity in the wave vector terms in the matrix element of electron scattering and in the energy spectrum. Calculation shows that, in high-mobility structures, the contribution to the spin Hall current considered here can exceed the term originating from the Mott skew scattering. The text was submitted by the author in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号