首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency.  相似文献   

2.
3.
4.
5.
Abstract

We sketch developments in the theory of the self-energy of charged particles moving near condensed matter surfaces. Some applications to experimental results from spectroscopy with electrons localized in microprobe beams and to electrons tunneling across a gap between two metals are considered.  相似文献   

6.
Complete understanding of atomic resolution high-angle annular dark-field (Z-contrast) images requires quantitative agreement between simulations and experiments. We show that intensity variations can be placed on an absolute scale by normalizing the measured image intensities to the incident beam. We construct fractional intensity images of a SrTiO3 single crystal for regions of different thickness up to 120 nm. Experimental images are compared directly with image simulations. Provided that spatial incoherence is taken into account in the simulations, almost perfect agreement is found between simulation and experiment.  相似文献   

7.
Different weighting filters used in tomographic algorithms are investigated. Algorithms for the recovery of tomographic structures are produced for general application in graphic processors. Software for a Carl Zeiss Libra 200FE microscope that enables us to record a series of projections in the STEM mode is developed. Calculation experiments show the improvement in tomogram quality when using cosine and 1/z 2 filters instead of a linear filter at high noise levels for objects larger than 25 points.  相似文献   

8.
束开俊  高利  林晓  高鸿钧 《物理》2003,32(9):613-617
文章介绍了Z衬度扫描透射电子显微术(Z-scanning transmission electron microscopy,Z-STEM,Z为原子序数)的最新进展:Z-STEM可以直接“观察”到晶体中原子的真实位置,Z衬度图像的分辨率在经过球差校正后可达0.6A;在利用Z衬度成像技术对材料的阴极荧光(cathodoluminescence,CL)性质的研究中,首次观察到了“死层”(dead layer)的存在.然后,文章以半导体与结晶氧化物界面结构、Al72Ni20Co8十角形准晶结构以及SrTiO3晶界结构为例,具体介绍了Z衬度成像在测定物质结构与化学组成方面独特的优势。  相似文献   

9.
10.
Modern scanning transmission electron microscopy (STEM) enables imaging and microanalysis at very high magnification. In the case of aberration-corrected STEM, atomic resolution is readily achieved. However, the electron fluxes used may be up to three orders of magnitude greater than those typically employed in conventional STEM. Since specimen contamination often increases with electron flux, specimen cleanliness is a critical factor in obtaining meaningful data when carrying out high magnification STEM. A range of different specimen cleaning methods have been applied to a variety of specimen types. The contamination rate has been measured quantitatively to assess the effectiveness of cleaning. The methods studied include: baking, cooling, plasma cleaning, beam showering and UV/ozone exposure. Of the methods tested, beam showering is rapid, experimentally convenient and very effective on a wide range of specimens. Oxidative plasma cleaning is also very effective and can be applied to specimens on carbon support films, albeit with some care. For electron beam-sensitive materials, cooling may be the method of choice. In most cases, preliminary removal of the bulk of the contamination by methods such as baking or plasma cleaning, followed by beam showering, where necessary, can result in a contamination-free specimen suitable for extended atomic scale imaging and analysis.  相似文献   

11.
Incoherent Z-contrast imaging uses a high-angle annular detector to collect only highly local, incoherently generated scattering with the result that images become dependent on intensities, not phases. No model structures are required for a first-order structure determination, and the images remain intuitively interpretable even at interfaces. Under suitable conditions, incoherently generated inelastic scattering may be collected simultaneously with a large-aperture axial spectrometer, and, by using the Z-contrast image to locate the scanning transmission electron microscope (STEM) probe over selected atomic columns, can provide an atomic-resolution chemical analysis. This is demonstrated with reference to an epitaxial CoSi2/Si(100) interface, achieving a 2.7 Å spatial resolution. Recent insights into the growth and relaxation of strained Si-Ge epitaxial films are described, highlighting the role of stress concentrations, and contrasting the case of a free surface with that of a surface constrained by an oxide layer.  相似文献   

12.
LiBC was used as a model compound for probing the applicability of phase-contrast (PC) imaging in an aberration-corrected scanning transmission electron microscope (STEM) to visualize lithium distributions. In the LiBC structure, boron and carbon are arranged to hetero graphite layers between which lithium is incorporated. The crystal structure is reflected in the PC-STEM images recorded perpendicular to the layers. The experimental images and their defocus dependence match with multi-slice simulations calculated utilizing the reciprocity principle. The observation that a part of the Li positions is not occupied is likely an effect of the intense electron beam triggering Li displacement.  相似文献   

13.
黎栋栋  周武 《物理学报》2017,66(21):217303-217303
二维原子晶体材料,如石墨烯和过渡金属硫族化合物等,具有不同于其块体的独特性能,有望在二维半导体器件中得到广泛应用.晶体中的结构缺陷对材料的物理化学性能有直接的影响,因此研究结构缺陷和局域物性之间的关联是当前二维原子晶体研究中的重要内容,需要高空间分辨率的结构研究手段.由于绝大部分二维原子晶体在高能量高剂量的电子束辐照下容易发生结构损伤,利用电子显微方法对二维原子晶体缺陷的研究面临诸多挑战.低电压球差校正扫描透射电子显微(STEM)技术的发展,一个主要目标就是希望在不损伤结构的前提下对二维原子晶体的本征结构缺陷进行研究.在STEM下,多种不同的信号能够被同步采集,包括原子序数衬度高分辨像和电子能量损失谱等,是表征二维原子晶体缺陷的有力工具,不但能对材料的本征结构进行单原子尺度的成像和能谱分析,还能记录材料结构的动态变化.通过调节电子束加速电压和电子辐照剂量,扫描透射电子显微镜也可以作为电子刻蚀二维原子晶体材料的平台,用于加工新型纳米结构以及探索新型二维原子晶体的原位制备.本综述主要以本课题组在石墨烯和二维过渡金属硫族化合物体系的研究为例,介绍低电压扫描透射电子显微学在二维原子晶体材料研究中的实际应用.  相似文献   

14.
Aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 A in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations. The affect of the channelling of the electron probe within the sample is also discussed.  相似文献   

15.
Reflection electron energy loss spectra (REELS) of Al(111) single crystal and of the aluminum polycrystalline (poly Al) film were measured at 200 eV and 1000 eV electron energies for a variety of experimental geometries and were mutually compared. No anisotropy was found for the poly Al, as expected. Polar intensity plots evaluated from the elastic (no loss) and inelastic first surface plasmon- and first bulk plasmon-loss intensities of the Al(111) surface show clearly discernable peaks for both considered electron energies. Their positions on the angular axis are the same for the elastic as well as for the inelastic, surface and bulk plasmon-loss peaks. The polar plots of intensities of the elastically and inelastically reflected electrons were compared to calculated intensities of photoelectrons emitted from the Al 2s core level to the same kinetic energy. Peak positions in the theoretically determined polar plots of electron intensities agree with those obtained experimentally in REELS.  相似文献   

16.
This paper presents a new technique using energy filtered TEM (EFTEM) for inelastic electron scattering contrast imaging of Germanium distribution in Si-SiGe nanostructures. Comparing electron energy loss spectra (EELS) obtained in both SiGe and Si single crystals, we found a spectrum area strongly sensitive to the presence of Ge in the range [50-100 eV]. In this energy loss window, EELS spectrum shows a smooth steeply shaped background strongly depending on Ge concentration. Germanium mapping inside SiGe can thus be performed through imaging of the EELS background slope variation, obtained by processing the ratio of two energy filtered TEM images, respectively, acquired at 90 and 60 eV. This technique gives contrasted images strongly similar to those obtained using STEM Z-contrast, but presenting some advantages: elastic interaction (diffraction) is eliminated, and contrast is insensitive to polycrystalline grains orientation or specimen thickness. Moreover, since the extracted signal is a spectral signature (inelastic energy loss) we demonstrate that it can be used for observation and quantification of Ge concentration depth profile of SiGe buried layers.  相似文献   

17.
Using a combination of high-angle annular dark-field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy in an aberration-corrected transmission electron microscope we demonstrate the possibility of 2D atom by atom valence mapping in the mixed valence compound Mn3O4. The Mn L(2,3) energy-loss near-edge structures from Mn2+ and Mn3+ cation sites are similar to those of MnO and Mn2O3 references. Comparison with simulations shows that even though a local interpretation is valid here, intermixing of the inelastic signal plays a significant role. This type of experiment should be applicable to challenging topics in materials science, such as the investigation of charge ordering or single atom column oxidation states in, e.g., dislocations.  相似文献   

18.
Magnetic skyrmions have interesting properties, including their small size, topological stability, and extremely low threshold current for current-driven motion. Therefore, they are regarded as promising candidates for next-generation magnetic memory devices. Lorentz transmission electron microscopy(TEM) has an ultrahigh magnetic domain resolution(~2 nm), it is thus an ideal method for direct real-space imaging of fine magnetic configurations of ultra-small skyrmions.In this paper, we describe the basic principles of Lorentz-TEM and off-axis electron holography and review recent experimental developments in magnetic skyrmion imaging using these two methods.  相似文献   

19.
Immobilized gold nanoparticles were imaged in a liquid containing water and 50% glycerol with scanning transmission electron microscopy (STEM). The specimen was enclosed in a liquid compartment formed by two silicon microchips with electron transparent windows. A series of images was recorded at video frequency with a spatial resolution of 1.5nm. The nanoparticles detached from their support after imaging them for several seconds at a magnification of 250,000. Their movement was found to be much different than the movement of nanoparticles moving freely in liquid as described by Brownian Motion. The direction of motion was not random-the nanoparticles moved either in a preferred direction, or radially outwards from the center of the image. The displacement of the gold nanoparticles over time was three orders of magnitude smaller than expected on the basis of Brownian Motion. This finding implies that nanoscale objects of flexible structure or freely floating, including nanoparticles and biological objects, can be imaged with nanoscale resolution, as long as they are in close proximity to a solid support structure.  相似文献   

20.
The results of electron-microscopic studies of grain boundaries and the structure of fractures of titanium boride-and nitride-based films obtained by nonreactive magnetron sputtering are considered. The chemical and phase composition of the films is analyzed with the help of Auger electron spectroscopy and microscopic electron diffraction analysis. The structure of boundaries and the presence of amorphous inclusions, dislocations, and other structural distortions are discussed and the nature of the deformation under indentation is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号