首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The pathologic self-assembly of proteins is associated with typically late-onset disorders such as Alzheimer's disease, Parkinson's disease, and type 2 diabetes. Important mechanistic details of the self-assembly are unknown, but there is increasing evidence supporting the role of transient α-helices in the early events. Islet amyloid polypeptide (IAPP) is a 37-residue polypeptide that self-assembles into aggregates that are toxic to the insulin-producing β cells. To elucidate early events in the self-assembly of IAPP, we used limited proteolysis to identify an exposed and flexible region in IAPP monomer. This region includes position 20 where a serine-to-glycine substitution (S20G) is associated with enhanced formation of amyloid fibrils and early onset type 2 diabetes. To perform detailed biophysical studies of the exposed and flexible region, we synthesized three peptides including IAPP(11-25)WT (wild type), IAPP(11-25)S20G, and IAPP(11-25)S20P. Solution-state NMR shows that all three peptides transiently populate the α-helical conformational space, but the S20P peptide, which does not self-assemble, transiently samples a broken helix. Under similar sample conditions, the WT and S20G peptides populate the α-helical intermediate state and β-sheet end state, respectively, of fibril formation. Our results suggest a mechanism for self-assembly that includes the stabilization of transient α-helices through the formation of NMR-invisible helical intermediates followed by an α-helix to β-sheet conformational rearrangement. Furthermore, our results suggest that reducing intermolecular helix-helix contacts as in the S20P peptide is an attractive strategy for the design of blockers of peptide self-assembly.  相似文献   

2.
Aggregation of Islet Amyloid Polypeptide (IAPP) has been implicated in the development of type II diabetes. Because IAPP is a highly amyloidogenic peptide, it has been suggested that the formation of IAPP amyloid fibers causes disruption of the cellular membrane and is responsible for the death of beta-cells during type II diabetes. Previous studies have shown that the N-terminal 1-19 region, rather than the amyloidogenic 20-29 region, is primarily responsible for the interaction of the IAPP peptide with membranes. Liposome leakage experiments presented in this study confirm that the pathological membrane disrupting activity of the full-length hIAPP is also shared by hIAPP 1-19. The hIAPP 1-19 fragment at a low concentration of peptide induces membrane disruption to a near identical extent as the full-length peptide. At higher peptide concentrations, the hIAPP 1-19 fragment induces a greater extent of membrane disruption than the full-length peptide. Similar to the full-length peptide, hIAPP 1-19 exhibits a random coil conformation in solution and adopts an alpha-helical conformation upon binding to lipid membranes. However, unlike the full-length peptide, the hIAPP 1-19 fragment did not form amyloid fibers when incubated with POPG vesicles. These results indicate that membrane disruption can occur independently from amyloid formation in IAPP, and the sequences responsible for amyloid formation and membrane disruption are located in different regions of the peptide.  相似文献   

3.
BACKGROUND: Pancreatic amyloid has been associated with type II diabetes. The major constituent of pancreatic amyloid is the 37-residue peptide islet amyloid polypeptide (IAPP). IAPP is expressed as a 67-residue pro-peptide called ProIAPP which is processed to IAPP following stimulation. While the molecular events underlying IAPP amyloid formation in vitro have been studied, little is known about the role of ProIAPP in the formation of pancreatic amyloid. This has been due in part to the limited availability of purified ProIAPP for conformational and biochemical studies. RESULTS: We present a method for efficient recombinant expression and purification of ProIAPP and a processing site mutant, mutProIAPP, as thioredoxin (Trx) fusion proteins. Conformation and amyloidogenicity of cleaved ProIAPP and mutProIAPP and the fusion proteins were assessed by circular dichroism, electron microscopy and Congo red staining. We find that ProIAPP and mutProIAPP exhibit strong self-association potentials and are capable of forming amyloid. However, the conformational transitions of ProIAPP and mutProIAPP during aging and amyloidogenesis are distinct from the random coil-to-beta-sheet transition of IAPP. Both proteins are found to be less amyloidogenic than IAPP and besides fibrils a number of non-fibrillar but ordered aggregates form during aging of ProIAPP. ProIAPP aggregates are cytotoxic on pancreatic cells but less cytotoxic than IAPP while mutProIAPP aggregates essentially lack cytotoxicity. The Trx fusion proteins are neither amyloidogenic nor cytotoxic. CONCLUSIONS: Our studies suggest that ProIAPP has typical properties of an amyloidogenic polypeptide but also indicate that the pro-region suppresses the amyloidogenic and cytotoxic potentials of IAPP.  相似文献   

4.
Amyloid deposition is a hallmark of many diseases, such as the Alzheimer’s disease. Numerous amyloidogenic proteins, including the islet amyloid polypeptide (IAPP) associated with type II diabetes, are natively unfolded and need to undergo conformational rearrangements allowing the formation of locally ordered structure(s) to initiate self‐assembly. Recent studies have indicated that the formation of α‐helical intermediates accelerates fibrillization, suggesting that these species are on‐pathway to amyloid assembly. By identifying an IAPP derivative with a restricted conformational ensemble that co‐assembles with IAPP, we observed that helical species were off‐pathway in homogenous environment and in presence of lipid bilayers or glycosaminoglycans. Moreover, preventing helical folding potentiated membrane perturbation and IAPP cytotoxicity, indicating that stabilization of helical motif(s) is a promising strategy to prevent cell degeneration associated with amyloidogenesis.  相似文献   

5.
《Chemistry & biology》1997,4(5):345-355
Background: Peptides derived from three of four putative α-helical regions of the prion protein (PrP) form amyloid in solution. These peptides serve as models for amyloidogenesis and for understanding the α helix → β strand conformational change that is responsible for the development of disease. Kinetic studies of amyloid formation usually rely on the detection of fibrils. No study has yet explored the rate of monomer peptide uptake or the presence of nonfibrillar intermediate species. We present a new electron spin resonance (ESR) method for probing the kinetics of amyloid formation. A spin label was covalently attached to a highly amyloidogenic peptide and kinetic trials were monitored by ESR.Results: Electron microscopy shows that the spin-labeled peptide forms amyloid, and ESR reveals the kinetic decay of free peptide monomer during amyloid formation. The combination of electron microscopy and ESR suggests that there are three kinetically relevant species: monomer peptide, amyloid and amorphous aggregate (peptide aggregates devoid of fibrils or other structures with long-range order). A rather surprising result is that amyloid formation requires the presence of this amorphous aggregate. This is particularly interesting because PrPSc the form of PrP associated with scrapie, is often found as an aggregate and amyloid formation is not a necessary component of prion replication or pathogenesis.Conclusions: Kinetic analysis of the time-dependent data suggests a model whereby the amorphous aggregate has a previously unsuspected dual role: it releases monomer into solution and also provides initiation sites for fibril growth. These findings suggest that the β-sheet-rich PrPSc may be stabilized by aggregation.  相似文献   

6.
A synthetic peptide has been de novo designed that self-assembles into beta-sheet fibrils exhibiting a nontwisted, stacked morphology. The stacked morphology is constituted by 2.5 nm wide filaments that laterally associate to form flat fibril laminates exceeding 50 nm in width and micrometers in length. The height of each fibril is limited to the length of exactly one peptide monomer in an extended beta-strand conformation, approximately 7 nm. Once assembled, these highly ordered, 2-D structures are stable over a wide range of pH and temperature and exhibit characteristics similar to those of amyloid fibrils. Furthermore, the rate of assembly and degree of fibril lamination can be controlled with kinetic parameters of pH and temperature. Finally, the presence of a diproline peptide between two beta-sheet-forming strands in the peptide sequence is demonstrated to be an important factor in promoting the nontwisting, laminated fibril morphology.  相似文献   

7.
Two “hot segments” within an islet amyloid polypeptide are responsible for its self-assembly, which in turn is linked to the decline of β-cells in type 2 diabetes (T2D). A readily available water-soluble, macrocyclic host, cucurbit[7]uril (CB[7]), effectively inhibits islet amyloid polypeptide (IAPP) aggregation through ion–dipole and hydrophobic interactions with different residues of the monomeric peptide in its random-coil conformation. A HSQC NMR study shows that CB[7] likely modulates IAPP self-assembly by interacting with and masking major residues present in the “hot segments” at the N terminus. CB[7] also prevents the formation of toxic oligomers and inhibits seed-catalyzed fibril proliferation. Importantly, CB[7] recovers rat insulinoma cells (RIN-m) from IAPP-assembly associated cytotoxicity.  相似文献   

8.
The self-assembly of peptides and proteins into beta-sheet-rich high-order structures has attracted much attention as a result of the characteristic nanostructure of these assemblies and because of their association with neurodegenerative diseases. Here we report the structural and conformational properties of a peptide-conjugated graft copolymer, poly(gamma-methyl-L-glutamate) grafted polyallylamine (1) in a water-2,2,2-trifluoroethanol solution as a simple model for amyloid formation. Atomic force microscopy revealed that the globular peptide 1 self-assembles into nonbranching fibrils that are about 4 nm in height under certain conditions. These fibrils are rich in beta-sheets and, similar to authentic amyloid fibrils, bind the amyloidophilic dye Congo red. The secondary and quaternary structures of the peptide 1 can be controlled by manipulating the pH, solution composition, and salt concentration; this indicates that the three-dimensional packing arrangement of peptide chains is the key factor for such fibril formation. Furthermore, the addition of carboxylic acid-terminated poly(ethylene glycol), which interacts with both of amino groups of 1 and hydrophobic PMLG chains, was found to obviously inhibit the alpha-to-beta structural transition for non-assembled peptide 1 and to partially cause a beta-to-alpha structural transition against the 1-assembly in the beta-sheet form. These findings demonstrate that the amyloid fibril formation is not restricted to specific protein sequences but rather is a generic property of peptides. The ability to control the assembled structure of the peptide should provide useful information not only for understanding the amyloid fibril formation, but also for developing novel peptide-based material with well-defined nanostructures.  相似文献   

9.
A reciprocal relationship between phosphorylation and O‐glycosylation has been reported for many cellular processes and human diseases. The accumulated evidence points to the significant role these post‐translational modifications play in aggregation and fibril formation. Simplified peptide model systems provide a means for investigating the molecular changes associated with protein aggregation. In this study, by using an amyloid‐forming model peptide, we show that phosphorylation and glycosylation can affect folding and aggregation kinetics differently. Incorporation of phosphoserines, regardless of their quantity and position, turned out to be most efficient in preventing amyloid formation, whereas O‐glycosylation has a more subtle effect. The introduction of a single β‐galactose does not change the folding behavior of the model peptide, but does alter the aggregation kinetics in a site‐specific manner. The presence of multiple galactose residues has an effect similar to that of phosphorylation.  相似文献   

10.
Beta-amyloid peptide (Abeta), in fibrillar form, is the primary constituent of senile plaques, a defining feature of Alzheimer's disease. In solution assays, fibril formation exhibits a lag time, interpreted as a nucleation/condensation-dependent process. The kinetics of fibrillogenesis is controlled by two key parameters: nucleation and elongation rate constants. We characterized the time course of Abeta fibril formation by measuring the scattering caused by peptide aggregates. We report here the interaction of Abeta with three alkylammonium bromides (dodecyl, tetradecyl, and hexadecyl) at supra- and submicellar concentrations and their influence on the kinetic constants. We observed a dual behavior: surfactants promoted or retarded fibril formation in a concentration-dependent manner. Below a determined surfactant concentration (close to the corresponding critical micellar concentration in medium without peptide), surfactants favor aggregation, presumably by means of electrostatic interactions that destabilize the native conformation. Beyond such concentration, the stabilizing effects of the monomer predominate. As a general rule, surfactants delay but do not completely inhibit aggregation.  相似文献   

11.
The conformational dynamics of poly(acrylic acid) induced by pH change is reported here. Poly(acrylic acid) immobilized on gold surface was exposed to pH changes, and the conformational changes thus induced were followed in real time using surface plasmon resonance spectroscopy. The temporal profile of the stretching-coiling phenomenon showed a minimum point, which was proposed to be arising due to the contradictory behavior of two different property changes in the polymeric system. Normally surface plasmon resonance (SPR) response would be a convoluted effect of the thickness and refractive index changes, but the behavior observed here, where the SPR response is predominantly governed by either one of the two, is unique and to the author's knowledge is a feature that is observed for the first time. Analysis of the kinetics of the angle change revealed that it takes longer for the polymer to stretch than it takes for it to collapse, with the kinetic rate constants varying by at least an order of magnitude. The SPR angle change as well as the kinetic constants increased linearly with molecular weight. Effect of Ca2+ was studied, and it was found that the polymer was locked in its conformation due to the binding of the multivalent cations.  相似文献   

12.
Interest in the 37-residue human islet amyloid polypeptide (hIAPP) is related to its ability to form amyloid deposits in patients affected by type II diabetes. Attempts to unravel the molecular features of this disease have indicated several regions of this polypeptide to be responsible for either the ability to form insoluble fibrils or the abnormal interaction with membranes. To extend these studies to peptides that enclose His18, whose ionization state is believed to play a key role in the aggregation of hIAPP, we report on the synthesis of two peptides, hIAPP17-29 and rIAPP17-29, encompassing the 17-29 sequences of human and rat IAPP, respectively, as well as on their conformational features in water and in several membrane-mimicking environments as revealed by circular dichroism (CD) and 2D-NMR studies. hIAPP17-29 adopts a beta-sheet structure in water and its solubility increases at low pH. Anionic sodium dodecyl sulfate (SDS) micelles promoted the formation of an alpha-helical structure in the peptide chain, which was poorly influenced by pH variations. rIAPP17-29 was soluble and unstructured in all the environments investigated, with a negligible effect of pH. The membrane interactions of hIAPP17-29 and rIAPP17-29 were assessed by recording differential scanning calorimetry (DSC) measurements aimed at elucidating the peptide-induced changes in the thermotropic behaviour of zwitterionic (DPPC) and negatively charged (DPPC/DPPS 3:1) model membranes (DPPC=1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPS=1,2-dipalmitoyl-sn-glycero-3-phosphoserine). Results of DSC experiments demonstrated the high potential of hIAPP17-29 to interact with DPPC membranes. hIAPP17-29 exhibited a negligible affinity for negatively charged DPPC/DPPS model membranes at neutral pH. On the other hand, rIAPP17-29 did not interact with neutral or negatively charged membranes. The role played by His18 in the modulation of the biophysical properties of this hIAPP region was assessed by synthesising and studying the R18HrIAPP17-29 peptide; the replacement of a single Arg with a His residue is not sufficient to induce either amyloidogenic propensity or membrane interaction in this region. The results show that the 17-29 domain of hIAPP has many properties of the full-length protein "in vitro" and this opens up new perspectives for both research and eventually therapy.  相似文献   

13.
Peptides and proteins are exposed to a variety of interfaces in a physiological environment, such as cell membranes, protein nanoparticles (NPs), or viruses. These interfaces have a significant impact on the interaction, self-assembly, and aggregation mechanisms of biomolecular systems. Peptide self-assembly, particularly amyloid fibril formation, is associated with a wide range of functions; however, there is a link with neurodegenerative diseases, such as Alzheimer's disease. This review highlights how interfaces affect peptide structure and the kinetics of aggregation leading to fibril formation. In nature, many surfaces are nanostructures, such as liposomes, viruses, or synthetic NPs. Once exposed to a biological medium, nanostructures are coated with a corona, which then determines their activity. Both accelerating and inhibiting effects on peptide self-assembly have been observed. When amyloid peptides adsorb to a surface, they typically concentrate locally, which promotes aggregation into insoluble fibrils. Starting from a combined experimental and theoretical approach, models that allow for a better understanding of peptide self-assembly near hard and soft matter interfaces are introduced and reviewed. Research results from recent years are presented and relationships between biological interfaces, such as membranes and viruses, and amyloid fibril formation are proposed.  相似文献   

14.
Transthyretin (TTR) is one of the known 20 or so human proteins that form fibrils in vivo, which is a hallmark of amyloid diseases. Recently, molecular dynamics simulations using ENCAD force field have revealed that under low pH conditions, the peptide planes of several amyloidogenic proteins can flip in one direction to form an alpha-pleated structure which may be a common conformational transition in the fibril formation. We performed molecular dynamics simulations with AMBER force fields on a recently engineered double mutant TTR, which was shown experimentally to form amyloid fibrils even under close to physiological conditions. Our simulations have demonstrated that peptide-plane flipping can occur even under neutral pH and room temperature for this amyloidogenic TTR variant. Unlike previously reported peptide-plane flipping of TTR using ENCAD force field, we have found two-way flipping using AMBER force field. We propose a new mechanism of amyloid formation based on the two-way flipping, which gives a better explanation of various experimental and computational results. In principle, the residual dipolar and hydrogen-bond scalar coupling techniques can be applied to the wild-type TTR and the variant to study the peptide-plane flipping of amyloidogenic proteins.  相似文献   

15.
Under the influence of a changed environment, amyloid‐forming proteins partially unfold and assemble into insoluble β‐sheet rich fibrils. Molecular‐level characterization of these assembly processes has been proven to be very challenging, and for this reason several simplified model systems have been developed over recent years. Herein, we present a series of three de novo designed model peptides that adopt different conformations and aggregate morphologies depending on concentration, pH value, and ionic strength. The design strictly follows the characteristic heptad repeat of the α‐helical coiled‐coil structural motif. In all peptides, three valine residues, known to prefer the β‐sheet conformation, have been incorporated at the solvent‐exposed b, c, and f positions to make the system prone to amyloid formation. Additionally, pH‐controllable intramolecular electrostatic repulsions between equally charged lysine (peptide A) or glutamate (peptide B) residues were introduced along one side of the helical cylinder. The conformational behavior was monitored by circular dichroism spectroscopic analysis and thioflavin T fluorescence, and the resulting aggregates were further characterized by transmission electron microscopy. Whereas uninterrupted α‐helical aggregates are found at neutral pH, Coulomb repulsions between lysine residues in peptide A destabilize the helical conformation at acidic pH values and trigger an assembly into amyloid‐like fibrils. Peptide B features a glutamate‐based switch functionality and exhibits opposite pH‐dependent folding behavior. In this case, α‐helical aggregates are found under acidic conditions, whereas amyloids are formed at neutral pH. To further validate the pH switch concept, peptide C was designed by including serine residues, thus resulting in an equal distribution of charged residues. Surprisingly, amyloid formation is observed at all pH values investigated for peptide C. The results of further investigations into the effect of different salts, however, strongly support the crucial role of intramolecular charge repulsions in the model system presented herein.  相似文献   

16.
Amylin or islet amyloid polypeptide (IAPP) is a 37‐residue peptide hormone secreted from the pancreatic islets into the blood circulation and is cleared by peptidases in the kidney. IAPP aggregates are strongly associated with β‐cell degeneration in type 2 diabetes, as demonstrated by the fact that more than 95% of patients exhibit IAPP amyloid upon autopsy. Recently, it has been reported that metal ions such as copper(II) and zinc(II) are implicated in the aggregation of IAPP as well as able to modulate the proteolytic activity of IAPP degrading enzymes. For this reason, in this work, the role of the latter metal ions in the degradation of IAPP by insulin‐degrading enzyme (IDE) has been investigated by a chromatographic and mass spectrometric combined method. The latter experimental approach allowed not only to assess the overall metal ion inhibition of the human and murine IAPP degradation by IDE but also to have information on copper‐ and zinc‐induced changes in IAPP aggregation. In addition, IDE cleavage site preferences in the presence of metal ions are rationalized as metal ion‐induced changes in substrate accessibility. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Protein folding is the most fundamental and universal example of biomolecular self-organization and is characterized as an intramolecular process. In contrast, amyloidogenic proteins can interact with one another, leading to protein aggregation. The energy landscape of amyloid fibril formation is characterized by many minima for different competing low-energy structures and, therefore, is much more enigmatic than that of multiple folding pathways. Thus, to understand the entire energy landscape of protein aggregation, it is important to elucidate the full picture of conformational changes and polymorphisms of amyloidogenic proteins. This review provides an overview of the conformational diversity of amyloid-β (Aβ) characterized from experimental and theoretical approaches. Aβ exhibits a high degree of conformational variability upon transiently interacting with various binding molecules in an unstructured conformation in a solution, forming an α-helical intermediate conformation on the membrane and undergoing a structural transition to the β-conformation of amyloid fibrils. This review also outlines the structural polymorphism of Aβ amyloid fibrils depending on environmental factors. A comprehensive understanding of the energy landscape of amyloid formation considering various environmental factors will promote drug discovery and therapeutic strategies by controlling the fibril formation pathway and targeting the consequent morphology of aggregated structures.  相似文献   

18.
A new approach for studying a peptide conformation of amyloid fibril has been developed. It is based on infrared linear dichroism analysis using an IR-microscope for aligned amyloid fibril. The polarization directions of amide I and II bands were perpendicular similarly for beta2-microglobulin and its #21-31 peptide. Furthermore, this approach has shown that the #21-31 peptide consists of two C=O bonds in the beta-sheet that makes 0 degrees with the fibril axis, three C=O bonds in the beta-sheet inclined by 27 degrees with respect to the fibril axis, four residues in the random coil by 47 degrees , and two residues in possible beta-bulge structure by 32 degrees . Plausible structures of the amyloid core in the fibril are proposed by taking account of these results.  相似文献   

19.
The formation of amyloid fibrils is one of the variants of the self-organization of polypeptide chains. For the amyloid aggregation, the solution must be oversaturated with proteins. The interface of the liquid (solution) and solid (vessel walls) phases can trigger the adsorption of protein molecules, and the resulting oversaturation can initiate conformational transitions in them. In any laboratory experiment, we cannot exclude the presence of surfaces such as the walls of vessels, cuvettes, etc. However, in many works devoted to the study of amyloid formation, this feature is not considered. In our work, we investigated the behavior of the Aβ 1-40 peptide at the water–glass, water–quartz, and water–plastic interface. We carried out a series of simple experiments and showed that the Aβ 1-40 peptide is actively adsorbed on these surfaces, which leads to a significant interaction and aggregation of peptides. This means that the interface can be the place where the first amyloid nucleus appears. We suggest that this effect may also be one of the reasons for the difficulty of reproducing kinetic data when studying the aggregation of the amyloid of the Aβ 1-40 peptide and other amyloidogenic proteins  相似文献   

20.
Aromatic side chains are important reporters of the plasticity of proteins, and often form important contacts in protein–protein interactions. We studied aromatic residues in the two structurally homologous cross-β amyloid fibrils HET-s, and HELLF by employing a specific isotope-labeling approach and magic-angle-spinning NMR. The dynamic behavior of the aromatic residues Phe and Tyr indicates that the hydrophobic amyloid core is rigid, without any sign of “breathing motions” over hundreds of milliseconds at least. Aromatic residues exposed at the fibril surface have a rigid ring axis but undergo ring flips on a variety of time scales from nanoseconds to microseconds. Our approach provides direct insight into hydrophobic-core motions, enabling a better evaluation of the conformational heterogeneity generated from an NMR structural ensemble of such amyloid cross-β architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号