首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了适应MEMS引信微型传爆序列的需求,针对微型雷管装药高度比对输出威力的影响开展了专门研究。改变装药直径为0.9 mm、装药高度为3 mm的微型雷管中起爆药与猛炸药装药高度比,用猛铜压阻传感器对爆轰输出压力进行测定,得到微型雷管中起爆药的临界高度为0.36 mm。当起爆药高度为1.65 mm时,微型雷管爆轰压力值最大,为10.3 GPa;当起爆药高度小于1.65 mm,HMX炸药高度大于1.35 mm时,随着起爆药高度的减小,猛炸药高度的增加,微型雷管的爆压值减小;当起爆药高度大于1.65 mm、HMX炸药高度小于1.35 mm时,随着起爆药高度的增加,猛炸药高度的减小,微型雷管的爆压值也减小。初步得出了羧铅起爆药和猛炸药的最佳高度比范围为0.69~2.26。  相似文献   

2.
柱形装药水中爆炸近场径向压力测试初探   总被引:1,自引:0,他引:1  
 针对端面起爆柱形装药水中爆炸近场冲击波阵面呈现非球形传播的特点,采用分幅相机记录了炸药起爆36 μs内近场冲击波的传播情况,分析了冲击波在不同时间和不同位置的形状;采用两台高速扫描相机测量了侧边任意一点的冲击波速度,结合Rankine-Hugoniot关系,得到了冲击波阵面的压力;同时用LS-DYNA方法对侧边任意一点的压力进行了数值模拟,两者得到的结果基本一致。  相似文献   

3.
周洪强  于明  孙海权  董贺飞  张凤国 《物理学报》2014,63(22):224702-224702
假定炸药和爆轰产物处于局部热力学平衡状态, 即它们的压力和温度相同, 利用热力学基本关系建立炸药爆轰过程的连续介质本构模型的一般理论框架. 在此框架下, 炸药爆轰本构模型由一组常微分方程构成, 包括炸药和爆轰产物的状态方程、简单混合法则、化学反应速率方程和能量守恒方程, 易于由成熟的计算方法如梯形法等进行求解. 一组广义Maxwell型非线性固体本构形式的微分方程描述了压力和温度随时间的演化速率与应变率和化学反应速率的关系, 借助简单混合物理论, 其中的系数由炸药和爆轰产物的材料参数确定. 未反应的炸药和爆轰产物采用JWL状态方程, 化学反应率方程采用Lee-Tarver点火-燃烧二项式模型, 模拟PBX-9404炸药的一维冲击波起爆过程和爆轰波传播过程. 计算结果表明了本文给出的本构模型和相应计算方法的有效性. 关键词: 炸药爆轰 本构模型 化学反应率方程 数值模拟  相似文献   

4.
姜羲  王荪源 《计算物理》1992,9(4):387-392
本文建立了密实炸药床跨音速两相反应流的二维非定常连续介质数学模型。将SIMPLE型的数值计算方法引入到密实炸药床燃烧转爆轰跨音速流动过程的数值计算中,其中对跨音速流动的处理和可压缩两相流压力校正方程的建立提出了改进方法。以无起爆药雷管作为算例。结果表明,本法较好地克服了跨音速两相流数值解中通常出现的数值振荡现象。  相似文献   

5.
为了研究不同起爆方式下非圆截面装药结构的释能规律,采用AUTODYN软件开展了非圆截面装药结构在不同起爆方式下的释能特性数值模拟,分析了起爆方式对爆轰波形演变、破片质量、破片初速的影响。结果表明:由于装药结构的特殊性,采用端部单点起爆时装药能量分布不均匀,部分区域产生大量的无效小质量破片,且不同位置处的破片初速波动较大;采用端部两点和端部三点起爆时,能够对爆轰能量起到匀化效果,减少无效破片数量,提升破片初速的一致性。由此证明通过调整起爆方式可以对非圆截面装药结构的能量输出结构进行有效调控,对其周向能量场起到匀化效果。  相似文献   

6.
为研究含有少量奥克托金(HMX)且以三氨基三硝基苯(TATB)为基的高能钝感炸药PBX-3的冲击起爆反应增长规律,采用火炮驱动蓝宝石飞片的方法和铝基组合式电磁粒子速度计技术进行了一维平面冲击实验。通过实验测量撞击表面及内部不同深度处的冲击波后粒子速度,得到PBX-3炸药的Hugoniot关系。根据冲击波示踪器所测数据绘制了炸药到爆轰的时间-距离(x-t)图,获得了反映炸药冲击起爆性能的Pop关系。将入射压力为12.964 GPa时达到爆轰的6条速度曲线修整成相同零点,通过读取6条曲线的分离点即反应区末端的C-J点,计算出化学反应区时间和宽度。  相似文献   

7.
为了研究装药在缓释结构作用下的响应特性,设计了弹药烤燃系统及弹体泄压装置,分析了B炸药在热刺激作用下泄压装置对响应烈度的影响,得到了B炸药在泄压结构作用下的升温曲线与响应结果。结果表明,无泄压孔时,装药的响应等级为爆轰反应,装药的响应温度较低,响应时间较短。泄压孔面积为装药面积的2.0%时,装药的响应等级为爆轰反应;泄压孔面积为装药面积的2.5%和3.5%时,装药的响应等级均为燃烧。弹药临近响应时刻冲开泄压孔,降低了炸药内部温度,延长了响应时间。通过数值模拟得到了装药内部温度的分布情况,响应时刻炸药温度呈层状分布,炸药响应点位于炸药顶部。RDX的分解放热是B炸药点火的主要原因。弹药泄压结构可以有效降低弹药响应的剧烈程度,提高装药的热安全性。  相似文献   

8.
CTVD格式数值计算非均质炸药爆轰问题   总被引:3,自引:0,他引:3  
楼建锋  于恒 《计算物理》2005,22(4):358-364
将高分辨率激波捕捉格式CTVD格式拓展应用到非均质炸药爆轰的数值模拟问题.增加了化学反应率控制方程,引入Lee-Tarver点火成长模型,未反应的固体炸药和化学反应气体产物都使用JWL形式状态方程.数值模拟了非均质固体炸药PBX-9404和TATB的冲击起爆问题.获得了较高的爆轰波分辨率和光滑解区的数值精度,对具有复杂物态方程形式的固体炸药爆轰问题,CTVD格式具有简单实用、高效和高分辨的特点.  相似文献   

9.
炸药两端同时起爆时金属圆管运动规律的研究,粗略的实验不少,但在数值模拟方面,特别是在对碰部位,或是不能计算出鼓包现象,或是鼓包的计算结果与实验差别较大。文中采用动力学有限元程序,针对大变形带来的网格扭曲造成计算的锁死现象进行了ALE技术处理,对金属圆管内爆轰波的相互作用效应进行数值模拟,给出了爆轰波对碰作用下金属圆管运动规律的计算结果。  相似文献   

10.
于明  刘全 《物理学报》2016,65(2):24702-024702
凝聚炸药爆轰在边界高声速材料约束下传播时,爆轰波会在约束材料界面上产生复杂的折射现象.本文针对凝聚炸药爆轰波在高声速材料界面上的折射现象展开理论和数值模拟分析.首先通过建立在爆轰ZND模型上的改进爆轰波极曲线理论给出爆轰波折射类型,然后发展一种求解爆轰反应流动方程的基于特征理论的二阶单元中心型Lagrange计算方法来数值模拟典型的爆轰波折射过程.从改进爆轰波极曲线理论和二阶Lagrange方法数值模拟给出的结果看出,凝聚炸药爆轰波在高声速材料界面上的折射类型有四种:反射冲击波的正规折射、带束缚前驱波的非正规折射、带双Mach反射的非正规折射、带λ波结构的非正规折射.  相似文献   

11.
 介绍并分析了Campbell 等人及其他作者研究非均匀炸药冲击起爆和起爆后行为所获得的实验结果,但不涉及其冲击起爆条件。足够强的冲击波进入非均匀炸药后,爆轰将瞬时(指不经过感应时间)且直接(指不经过其他过程,如爆燃)被引发;非均匀炸药起爆后,其中传播的自始至终是一个不断增长的爆轰波,直至发展为正常爆轰,整个过程都是爆轰的增长(新定义)过程。不存在由反应冲击波不断增长并转变为爆轰波的所谓向爆轰的增长。所谓向爆轰的增长,实际上是爆轰的增长(按新定义)的初期;Craig原定义的爆轰的增长,实际上是爆轰的增长(按新定义)的后期;而所谓反应冲击波,实际上是增长中的初期爆轰波。爆轰的增长(按新定义)是所有猛炸药的特性,炸药反应不充分并逐渐趋于充分是爆轰的增长的化学机制。  相似文献   

12.
为快速预估任意配比的多元混合炸药爆轰产物的JWL(Jones-Wilkins-Lee)参数,提出了快速确定多元混合炸药爆轰驱动圆筒膨胀规律的理论方法,即在给定各组分爆轰产物JWL参数的前提下,根据能量守恒定律,采用Gurney模型,确定圆筒试验中多元混合炸药爆轰驱动圆筒膨胀距离随时间变化的曲线。同时,利用能量守恒原理以及经典爆轰理论中通过常γ状态方程得到的爆速、爆压和爆热之间的关系式,提出了确定多元混合炸药爆速和爆压的方法。采用该理论方法,分别计算了多元混合炸药PBXC03和PBXC10爆轰驱动圆筒膨胀规律及爆速和爆压,计算结果与前人的实验结果符合较好,验证了该理论方法的可行性和有效性。  相似文献   

13.
 介绍并分析了Campbell等人研究均匀炸药冲击起爆和起爆后行为所获得的实验结果,但不涉及其冲击起爆条件。Campbell等人的实验表明,足够强的冲击波进入硝基甲烷后,经过若干微秒的感应时间,爆轰发生在隔板与炸药间的界面处。这就是说,在均匀炸药中,足够强的冲击虽非瞬时但直接(指不经过其它过程,如爆燃)引发了爆轰。重新处理后的实验数据表明:硝基甲烷起爆后,爆轰波的净爆速小于正常爆速;当进入硝基甲烷的初始冲击波的有效压力peff由8.82 GPa升至12.14 GPa时,感应时间tind的实验值由3.06 μs降至0.705 μs。以两相的排平(A,m)物态方程描述爆轰产物,较为严格地重新推导了基于热起爆理论的估算感应时间tind的公式。在上述peff的变化范围内,tind的理论值则由248 μs降至0.99 μs,明显地高于实验值。这表明,热起爆理论不适于描述硝基甲烷的冲击起爆行为。从本质上讲,热起爆理论对均匀炸药的冲击起爆行为的描述,不符合物质运动的微观图像,因此,它不适于描述均匀炸药的上述行为。  相似文献   

14.
 利用纹影技术研究了炸药爆轰后驱动物质的变形过程。为了便于观察,待测物质选取为变形比较大的介质水。实验观察表明,在炸药爆轰作用下,筒状水的膨胀首先由雷管起爆端开始,形成了倾斜状、波浪形的界面。结果表明:阵面的波动破裂均从外界面开始,界面的不稳定性可能是导致其失稳并破碎的主要原因。实验还观察到炸药爆轰后不同延迟时间的物体从大块变成小块的发展过程。研究中克服了炸药爆轰产物发光对图像的影响,以及爆炸振动对光路的影响。研制了一种简易的触发探针,解决了外光源和炸药爆轰的同步问题。  相似文献   

15.
回顾了近年来在高聚物黏结炸药(PBX)原子和分子尺度数值模拟方面取得的进展,主要研究领域包括以下6个方面:炸药分子力场、热力学参数计算、耗散/输运性能、相图/相变动力学、动力学响应行为和热点形成机制。针对当前研究现状,介绍了各领域的代表性工作和主要研究成果。目前对PBX炸药的结构和静力学性能已有较充分的认识,但对炸药的动力学响应行为和细观起爆机制尚缺少系统的科学认识,存在一系列挑战性问题,如结构缺陷在爆轰反应后期的形态和表征,以及初始缺陷对爆轰波波形畸变的影响机制。需要将理论计算与实验相结合,以解决爆轰物理领域中的难点问题。  相似文献   

16.
陈福振  强洪夫  苗刚  高巍然 《物理学报》2015,64(11):110202-110202
燃料在炸药爆炸驱动下形成燃料空气爆炸云团, 进而引燃爆炸, 对目标造成毁伤. 本文在前期提出的光滑离散颗粒流体动力学方法(SDPH)的基础上, 引入描述炸药由爆轰到膨胀整个过程的Jones-Wilkins-Lee状态方程及描述气体快速燃烧过程的EBU-Arrhenius燃烧模型, 建立了求解战斗部起爆、燃料抛撒和燃料二次引燃爆炸问题的新型SDPH方法. 设计了圆环形燃料颗粒在炸药爆炸驱动下运动抛撒的算例进行数值验证, 结果与理论相符; 对燃料空气炸药(FAE)云雾的形成和发展过程进行了数值模拟, 分析了云雾的形态, 并与实验结果进行对比, 符合较好, 同时分析了不同起爆方式对云雾团成型的影响; 最后, 在云雾团成型的基础上, 引入蒸发燃烧模型对FAE的燃烧爆炸过程进行了模拟研究. 结果表明, 本文建立的数学模型和计算方法可以较好的模拟燃料空气炸药抛撒成雾及云雾燃烧爆炸过程, 为该类武器装备的设计研究提供了较好的数值方法.  相似文献   

17.
采用CE/SE方法数值模拟悬浮在空气中的RDX炸药粉尘的两相爆轰过程.炸药颗粒在爆轰波阵面后的高温高速气流中加速并升温,释放能量支持爆轰波传播.数值模拟爆轰波管中的粉尘爆轰,得到爆轰波流场中的物理量分布,确定爆轰参数,数值结果与文献符合较好.数值模拟复杂通道中的炸药粉尘爆轰,预测了爆轰波的发展和传播过程以及爆轰波后的流场演化.数值结果表明CE/SE方法能成功模拟气体-固体两相爆轰,为粉尘爆轰的研究提供了新的数值预测手段.  相似文献   

18.
 采用高速转镜分幅相机和电探针技术研究了猛炸药RHT-901和钝感炸药IHE-2的爆轰波直角绕射图像和不同位置上的爆轰波传播时间。从研究得出,两种炸药都在拐角顶点附近绕射,爆轰波传播时间增长,爆速变小。但是两种炸药绕射爆轰波的状态不一样,钝感炸药IHE-2中爆轰波绕过直角时,在拐角顶点附近约10 mm范围内炸药未完全反应,猛炸药RHT-901中爆轰波绕过直角时未出现类似现象。两者相比,钝感炸药中绕射爆轰波速度变化大,波阵面曲率半径小,而猛炸药的绕射爆轰波速度变化小,波阵面曲率半径大。这说明炸药的爆轰波绕射与炸药的冲击感度、反应区宽度有关。  相似文献   

19.
董贺飞  洪滔  张晓立 《计算物理》2012,29(4):495-502
采用CE/SE方法数值模拟悬浮在空气中的RDX炸药粉尘的两相爆轰过程.炸药颗粒在爆轰波阵面后的高温高速气流中加速并升温,释放能量支持爆轰波传播.数值模拟爆轰波管中的粉尘爆轰,得到爆轰波流场中的物理量分布,确定爆轰参数,数值结果与文献符合较好.数值模拟复杂通道中的炸药粉尘爆轰,预测了爆轰波的发展和传播过程以及爆轰波后的流场演化.数值结果表明CE/SE方法能成功模拟气体-固体两相爆轰,为粉尘爆轰的研究提供了新的数值预测手段.  相似文献   

20.
考察颗粒炸药从传导燃烧到对流燃烧再到爆轰的过程.对装填密度为85%的HMX颗粒炸药的燃烧转爆轰过程进行数值模拟,分析传导燃烧、对流燃烧和爆轰的发展过程.点火早期燃烧速度很低,火焰面在8.16 ms之内只前进了不到0.2 mm;形成对流燃烧之后燃烧速度快速增加,只用了0.1 ms就形成了速度为8 165 m·s-1的稳定爆轰.当炸药颗粒直径或点火压力减小时,形成稳定爆轰所需的时间增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号